Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-5wlnc Total loading time: 0.445 Render date: 2021-08-02T13:56:31.992Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia

Published online by Cambridge University Press:  14 July 2015

Richard C. Hulbert Jr.
Affiliation:
1Department of Geology and Geography, Georgia Southern University, Statesboro 30460-8149
Richard M. Petkewich
Affiliation:
1Department of Geology and Geography, Georgia Southern University, Statesboro 30460-8149
Gale A. Bishop
Affiliation:
1Department of Geology and Geography, Georgia Southern University, Statesboro 30460-8149
David Bukry
Affiliation:
2United States Geological Survey, MS-915, 345 Middlefield Road, Menlo Park, California 94025
David P. Aleshire
Affiliation:
3Department of Biology, Georgia Southern University, Statesboro 30460-8042
Corresponding

Abstract

A shallow-marine fossil biota was recovered from the Blue Bluff unit (formerly part of the McBean Formation) in the Upper Coastal Plain of eastern Georgia. Biochronologically significant mollusks (e.g., Turritella nasuta, Cubitostrea sellaeformis, Pteropsella lapidosa) and calcareous nannoplankton (e.g., Chiasmolithus solitus, Reticulofenestra umbilica, Cribocentrum reticulatum) indicate a latest Lutetian-earliest Bartonian age, or about 40 to 41 Ma. Georgiacetus vogtlensis new genus and species is described from a well-preserved, partial skeleton. Georgiacetus is the oldest known whale with a true pterygoid sinus fossa in its basicranium and a pelvis that did not articulate directly with the sacral vertebrae, two features whose acquisitions were important steps toward adaptation to a fully marine existence. The posterior four cheek teeth of G. vogtlensis form a series of carnassial-like shearing blades. These teeth also bear small, blunt accessory cusps, which are regarded as being homologous with the larger, sharper accessory cusps of basilosaurid cheek teeth.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abler, W. L. 1992. The serrated teeth of tyrannosaurid dinosaurs and biting structures in other animals. Paleobiology, 18:161183.CrossRefGoogle Scholar
Albright, L. B. 1996. A protocetid cetacean from the Eocene of South Carolina. Journal of Paleontology, 70:519523.CrossRefGoogle Scholar
Allison, P. A., Smith, C. R., Kukert, H., Deming, J. W., and Bennett, B. 1991. Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina basin. Paleobiology, 17:7889.CrossRefGoogle Scholar
Andrews, C. W. 1920. A description of new species of zeuglodont and of leathery turtle from the Eocene of southern Nigeria. Proceedings of the Zoological Society of London, 22:309319.Google Scholar
Bajpai, S., Thewissen, J. G. M., and Sahni, A. 1996. Indocetus (Cetacea, Mammalia) endocasts from Kachchh (India). Journal of Vertebrate Paleontology, 16:582584.CrossRefGoogle Scholar
Barnes, L. G., and Mitchell, E. 1978. Cetacea, p. 582602. In Maglio, V. J. and Cooke, H. B. S. (eds.), Evolution of African Mammals. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication 54.Google Scholar
Brantly, J. E. 1916. A report on the limestones and marls of the Coastal Plain of Georgia. Georgia Geological Survey Bulletin, 21, 300 p.Google Scholar
Brisson, M. J. 1762. Regnum animale in classes IX distributum sive synopsis methodica; editio altera auctior. Theodorum Haak, Leiden, 296 p.Google Scholar
Bryant, H. N., and Russell, A. P. 1995. Carnassial functioning in nimravid and felid sabertooths: theoretical basis and robustness of inferences, p. 116135. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, England.Google Scholar
Cooke, C. W. 1943. Geology of the Coastal Plain of Georgia. U.S. Geological Survey Bulletin, 941, 121 p.Google Scholar
Cushman, J. A., and Herrick, S. M. 1945. The Foraminifera of the type locality of the McBean Formation. Contributions from the Cushman Laboratory for Foraminiferal Research, 21:5573.Google Scholar
Darrell, J. H. 1984. A palynological analysis of the Plant Vogtle Whale Site. Georgia Journal of Science, 42:22.Google Scholar
Deméré, T. A., and Cerutti, R. A. 1982. A Pliocene shark attack on a cetotheriid whale. Journal of Paleontology, 56:14801482.Google Scholar
Fallaw, W. C., and Price, V. 1995. Stratigraphy of the Savannah River Site and vicinity. Southeastern Geology, 35:2158.Google Scholar
Flower, W. H. 1883. On the arrangement of the orders and families of existing mammals. Proceedings of the Zoological Society of London, 178-186.Google Scholar
Fordyce, R. E., and Barnes, L. G. 1994. The evolutionary history of whales and dolphins. Annual Review of Earth and Planetary Sciences, 22:419455.CrossRefGoogle Scholar
Fraas, E. 1904a. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geologische und Paläontologische Abhandlungen, Neue Folge, 6:199220.Google Scholar
Fraas, E. 1904b. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geologische Zentralblatt, Leipzig, 5:374.Google Scholar
Galloway, W. E., Bebout, D. G., Fisher, W. L., Dunlap, J. B., Cabrera-Castro, R., Lugo-Rivera, J. E., and Scott, T. M. 1991. Cenozoic, p. 245324. In Salvador, A. (ed.), The Gulf of Mexico Basin. The Geology of North America, Volume J. Geological Society of America, Boulder.Google Scholar
Geisler, J., Sanders, A. E., and Luo, Z. 1996. A new protocetid cetacean from the Eocene of South Carolina, U.S.A.; phylogenetic and biogeographic implications, p. 139. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication 8.Google Scholar
Gingerich, P. D. 1991. Partial skeleton of a new archaeocete from the earliest middle Eocene Habib Rahi Limestone, Pakistan. Journal of Vertebrate Paleontology, 11(supplement):31A.Google Scholar
Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments. University of Michigan Papers on Paleontology, 30:184.Google Scholar
Gingerich, P. D., and Russell, D. E. 1990. Dentition of early Eocene Pakicetus (Mammalia, Cetacea). Contributions from the Museum of Paleontology The University of Michigan, 28:120.Google Scholar
Gingerich, P. D., Arif, M., and Clyde, W. C. 1995a. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology The University of Michigan, 29:291330.Google Scholar
Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science, 249:154157.CrossRefGoogle ScholarPubMed
Gingerich, P. D., Arif, M., Bhatti, M. A., Raza, H. A., and Raza, S. M. 1995b. Protosiren and Babiacetus (Mammalia, Sirenia and Cetacea) from the middle Eocene Drazinda Formation, Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology The University of Michigan, 29:331357.Google Scholar
Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1993. Partial skeletons of Indocetus ramani (Mammalia, Cetacea) from the lower middle Eocene Domanda Shale in the Sulaiman Range of Punjab (Pakistan). Contributions from the Museum of Paleontology The University of Michigan, 28:393416.Google Scholar
Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844847.CrossRefGoogle Scholar
Gohn, G. S. 1988. Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida, p. 107130. In Sheridan, R. E. and Grow, J. A. (eds.), The Atlantic Continental Margin: U.S. The Geology of North America, Volume 1–2. Geological Society of America, Boulder.Google Scholar
Gottfried, M. D., Bohaska, D. J., and Whitmore, F. C. 1994. Miocene cetaceans of the Chesapeake Group, p. 229238. In Berta, A. and Deméré, T. A. (eds.), Contributions in Marine Mammal Paleontology Honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Natural History Society 29.Google Scholar
Greaves, W. S. 1995. Functional predictions from theoretical models of the skull and jaws in reptiles and mammals, p. 116135. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, England.Google Scholar
Halstead, L. B., and Middleton, J. A. 1974. New material of the archaeocete whale, Pappocetus lugardi Andrews, from the middle Eocene of Nigeria. Journal of Mining and Geology, 8:8185.Google Scholar
Harris, W. B., and Fullagar, P. D. 1991. Middle Eocene and late Oligocene isotopic dates of glauconitic mica from the Santee River area, South Carolina. Southeastern Geology, 32:119.Google Scholar
Hulbert, R. C. 1994. Phylogenetic analysis of Eocene whales (“Archaeoceti”) with a diagnosis of a new North American genus. Journal of Vertebrate Paleontology, 14(supplement):30A.Google Scholar
Hulbert, R. C. 1995. Biostratigraphy and phylogeny of Paleogene archaeocete whales of the Southeast. Geological Society of America Abstracts with Programs, 27(2):64.Google Scholar
Hulbert, R. C. 1998. Postcranial osteology of the North American middle Eocene protocetid Georgiacetus., p. 235267. In Thewissen, J. G. M. (ed.), The Emergence of Whales. Plenum Press, New York.CrossRefGoogle Scholar
Huddlestun, P. F., and Hetrick, J. 1978. Stratigraphy of the Tobacco Road Sand—a new formation. Georgia Geological Survey Bulletin, 93:5677.Google Scholar
Huddlestun, P. F., and Hetrick, J. 1986. Upper Eocene stratigraphy of central and eastern Georgia. Georgia Geological Survey Bulletin, 95, 78 p.Google Scholar
Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Institution of Washington Publication, 482:1366.Google Scholar
Leidy, J. 1873. Contributions to the extinct vertebrate fauna of the Western Territories. Report of the United States Geological Survey of the Territories, 358 p.Google Scholar
Loeblich, A. R. Jr. and Tappan, H. 1957. Correlation of the Atlantic Coastal Plain Paleocene and lower Eocene formations by means of planktonic Foraminifera. Journal of Paleontology, 31:11091137.Google Scholar
Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7:121137.CrossRefGoogle Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of Mammals above the Species Level. Columbia University Press, New York, 631 p.Google Scholar
McLeod, S. A., and Barnes, L. G. 1990. Archaeocete cetaceans from the Atlantic Coastal Plain of the United States, including a new protocetid. Journal of Vertebrate Paleontology, 9(supplement):35A.Google Scholar
McLeod, S. A., and Barnes, L. G. 1996. The systematic position of Pappocetus lugardi and a new taxon from North America (Archaeoceti: Protocetidae), p. 270. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication 8.Google Scholar
Mellett, J. S. 1977. Paleobiology of North American Hyaenodon (Mammalia, Creodontia). Contributions to Vertebrate Paleontology, Number 1, 134 p.Google Scholar
Nystrom, P. G., Willoughby, R. H., and Price, L. K. 1991. Cretaceous and Tertiary stratigraphy of the upper Coastal Plain, South Carolina, p. 221240. In Horton, J. W. and Zullo, V. A. (eds.), The Geology of the Carolinas. University of Tennessee Press, Knoxville.Google Scholar
Palmer, K. V., and Brann, D. C. 1965. Catalogue of the Paleocene and Eocene Mollusca of the southern and eastern United States. Part 1. Pelecypoda, Amphineura, Pteropoda, Scaphopoda, and Cephalopoda. Bulletins of American Paleontology, 218, 466 p.Google Scholar
Petkewich, R. M., and Lancaster, W. C. 1984. Middle Eocene archaeocete whales from the McBean Formation of Burke County, Georgia. Georgia Journal of Science, 42:21.Google Scholar
Powell, R. J. 1984. Lithostratigraphy, depositional environment, and sequence framework of the middle Eocene Santee Limestone, South Carolina Coastal Plain. Southeastern Geology, 25:79100.Google Scholar
Sahni, A., and Mishra, V. P. 1975. Lower Tertiary vertebrates from western India. Monograph of the Palaeontological Society of India 48, 48 p.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. Chicago University Press, Chicago, 568 p.Google Scholar
Siesser, W. G., Fitzgerald, B. G., and Kronman, D. J. 1985. Correlation of Gulf Coast provincial Paleogene stages with European standard stages. Geological Society of America Bulletin, 96:827831.2.0.CO;2>CrossRefGoogle Scholar
Stromer, E. 1908. Die Archaeoceti des ägyptischen Eozäns. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 21:106178.Google Scholar
Thayer, P. A., and Harris, M. K. 1992. Petrology and reservoir characteristics of middle and late Eocene carbonate strata in downdip wells at the Savannah River Site, S.C., p. V1V7. In Fallaw, W. and Price, V. (eds.), Geological Investigations of the Central Savannah River Area, South Carolina and Georgia. Carolina Geological Society Field Trip Guidebook, Columbia, South Carolina.Google Scholar
Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science, 263:210212.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Courier Forschungsinstitut Senckenberg, 191:186.Google Scholar
Thewissen, J. G. M., Roe, L. J., O'Neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996b. Evolution of cetacean osmoregulation. Nature, 381:379380.CrossRefGoogle Scholar
Toohey, L. 1959. The species of Nimravus (Carnivora, Felidae). Bulletin of the American Museum of Natural History, 118:71112.Google Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene fossils in the eastern Gulf Coast region. Alabama Geological Survey Monograph, 13, 602 p.Google Scholar
Trivedy, A. N., and Satsangi, P. P. 1984. A new archaeocete (whale) from the Eocene of India. Abstracts 27th International Geological Congress, Moscow, 1:322323.Google Scholar
Uhen, M. D. 1996. New protocetid archaeocete (Mammalia, Cetacea) from the late middle Eocene Cook Mountain Formation of Louisiana. Journal of Vertebrate Paleontology, 16(supplement):70A.Google Scholar
Uhen, M. D. 1998. New protocetid (Mammalia, Cetacea) from the late middle Eocene Cook Mountain Formation of Louisiana. Journal of Vertebrate Paleontology, 18:664668.CrossRefGoogle Scholar
Uhen, M. D. In press. New species of protocetid archaeocete (Mammalia, Cetacea) from the middle Eocene of North Carolina. Journal of Paleontology.Google Scholar
Veatch, O., and Stephenson, L. W. 1911. Preliminary report on the geology of the Coastal Plain of Georgia. Georgia Geological Survey Bulletin, 26, 466 p.Google Scholar
Wei, W., and Wise, S. W. 1989. Paleogene calcareous nannofossil magnetochronology: results from South Atlantic DSDP Site 516. Marine Micropaleontology, 14:119152.CrossRefGoogle Scholar
Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Funtional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contributions from the Museum of Paleontology The University of Michigan, 28:289319.Google Scholar
68
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *