Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-xl4lj Total loading time: 0.225 Render date: 2021-06-17T18:41:09.312Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

New Eocene hydrocarbon seep decapod crustacean (Anomura: Galatheidae: Shinkaiinae) and its paleobiology

Published online by Cambridge University Press:  14 July 2015

Carrie E. Schweitzer
Affiliation:
Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, <cschweit@kent.edu>
Rodney M. Feldmann
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242, <rfeldman@kent.edu>
Corresponding

Abstract

A new decapod crustacean species, Shinkaia katapsyxis, is reported from the Eocene Humptulips Formation of western Washington, USA. The specimens were collected from a hydrocarbon seep deposit that has been well-documented and contains a well-described molluscan fauna. The new occurrence extends the geologic range of the genus Shinkaia Baba and Williams, 1998, and subfamily Shinkaiinae Baba and Williams, 1998, into the Eocene from its only other known occurrences in hydrothermal vent environments in the Pacific Ocean. The range extension of an extant decapod genus into the Eocene is not uncommon and adds to the evidence that the Decapoda may be unusually resistant to extinctions and are distinctly conservative evolutionarily.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alcock, A. 1900. Materials for a carcinological fauna of India, 5: The Brachyura Primigenia or Dromiacea. Journal of the Asiatic Society of Bengal, 68(II:3): 123169.Google Scholar
Anderson, J., Lyons, T., and Shapiro, R. S. 2005. Petrology and petrography of the Tepee Buttes (Cretaceous) methane-seep carbonates. Geological Society of America 2005 Annual Meeting Abstracts with Programs, 37(7):138.Google Scholar
Baba, K. and Williams, A. B. 1998. New Galatheiodea (Crustacea, Decapoda, Anomura) from hydrothermal systems in the West Pacific Ocean: Bismarck Archipelago and Okinawa Trough. Zoosystema, 20:143156.Google Scholar
Bell, T. 1863. A Monograph of the fossil malacostracous Crustacea of Great Britain, Pt. II, Crustacea of the Gault and Greensand. Palaeontographical Society Monograph, London, 40 p., 11 pls. Google Scholar
Bishop, G. A. 1981. Occurrence and fossilization of the Dakoticancer assemblage, Upper Cretaceous Pierre Shale, South Dakota, p. 383413. In Gray, J. (ed.), Communities of the Past. Hutchinson Ross Publishing Co., Stroudsburg, Pa. Google Scholar
Bishop, G. A. 1982. Homolopsis mendrycki: A new fossil crab (Crustacea: Decapoda) from the Late Cretaceous Dakoticancer assemblage, Pierre Shale (Maastrichtian) of South Dakota. Journal of Paleontology, 56:221225.Google Scholar
Bishop, G. A. 1986. A new crab, Zygastrocarcinus cardsmithi (Crustacea, Decapoda), from the Lower Pierre Shale, southeastern Montana. Journal of Paleontology, 60:10971102.CrossRefGoogle Scholar
Bishop, G. A. 1988. New fossil crabs, Plagiophthalmus izetti, Latheticocarcinus shapiroi, and Sagittiformosus carabus (Crustacea, Decapoda), from the Western Interior Cretaceous, United States of America. Proceedings of the Biological Society of Washington, 101:375381.Google Scholar
Bishop, G. A. 1992. Two new crabs, Homolopsis williamsi and Homolopsis centurialis (Crustacea: Decapoda), from the Western Interior Cretaceous of the United States. Proceedings of the Biological Society of Washington, 105:5566.Google Scholar
Bishop, G. A. and Williams, A. B. 2000. Fossil crabs from Tepee Buttes, submarine deposits of the Late Cretaceous Pierre Shale, South Dakota and Colorado, United States of America. Journal of Crustacean Biology, 20(special number2):286300.CrossRefGoogle Scholar
Brönniman, P. and Norton, P. 1960. On the classification of fossil faecal pellets and description of new forms from Cuba, Guatemala, and Libya. Ecologae Geologiae Helvetiae, 53:832842.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:362407.CrossRefGoogle Scholar
Chan, T.-Y., Lee, D.-A., and Lee, C.-S. 2000. The first deep-sea hydrothermal animal reported from Taiwan: Shinkaia crosnieri Baba and Williams, 1998 (Crustacea: Decapoda: Galatheidae). Bulletin of Marine Science, 67:799804.Google Scholar
Chevaldonée, P. and Olu, K. 1996. Occurrence of anomuran crabs (Crustacea: Decapoda) in hydrothermal vent and cold-seep communities: A review. Proceedings of the Biological Society of Washington, 109:286298.Google Scholar
Close, H. and Parsons-Hubbard, K. 2006. A reinterpretation of depositional controls on the Cretaceous Tepee Buttes methane seep deposits, Colorado. Geological Society of America North-Central Section 40th Annual Meeting Abstracts with Programs, 38(4):76.Google Scholar
Collins, M. 1999. A biometric and taxonomic study of Miocene-age, hydrocarbon-seep mussels from the east coast of the North Island, New Zealand. Unpublished M.S. thesis, University of Auckland, New Zealand, 50 pp.Google Scholar
Dahl, R. M., Close, H. G., Parsons-Hubbard, K., and Shapiro, R. S. 2005. Paleoecology and topographic expression of a Cretaceous cold seep; a taphonomic analysis of the Tepee Butte Limestone. Geological Society of America 2005 Annual Meeting Abstracts with Programs, 37(7):138139.Google Scholar
Dall, W. H. 1891. On some new or interesting West American shells obtained from the dredgings of the U.S. Fish Commission steamer “Albatross” in 1888, and from other sources. Proceedings of the United States National Museum, 14:173191.CrossRefGoogle Scholar
Glaessner, M. F. 1969. Decapoda, p. R400R533, R626–R628. In Moore, R. C. (ed), Treatise on Invertebrate Paleontology, Pt. R4(2). Geological Society of America, Boulder, Colorado, and University of Kansas Press, Lawrence, Kansas.Google Scholar
Goedert, J. L. and Kaler, K. L. 1996. A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a middle Eocene cold-seep carbonate in the Humptulips Formation, Western Washington. The Veliger, 39:6570.Google Scholar
Goedert, J. L. and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18:11821185.2.3.CO;2>CrossRefGoogle Scholar
Haan, W. de. (1833–1850). Crustacea, ixvii, i–xxxi, ix–xvi, 1–243, pls. A–J, L–Q, 1–55, circ. Tab.2. In Von Siebold, P. F. (ed.), Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui summum in India Batava Imperium Tenent, Suscepto, Annis 1823–1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit. Lugduni-Batavorum (=Leiden): J. Müller et Co.Google Scholar
Hickman, C. S. 1984. A new archaeogastropod (Rhipidoglossa, Trochacea) from hydrothermal vents on the East Pacific Rise. Zoologica Scripta, 13:1925.CrossRefGoogle Scholar
Jablonski, D., Sepkoski, J. J., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-Offshore Patterns in the Evolution of Phanerozoic Shelf Communities. Science, 222(4628):11231125.CrossRefGoogle ScholarPubMed
Karasawa, H. and Schweitzer, C. E. 2006. A new classification of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato . Contributions to Zoology, 75:2373.Google Scholar
Karasawa, H., Schweitzer, C. E., and Feldmann, R. M. 2008. Revision of the Portunoidea Rafinesque, 1815 (Decapoda: Brachyura) with emphasis on the fossil genera and families. Journal of Crustacean Biology, 28:82127.CrossRefGoogle Scholar
Kauffman, E. G., Arthur, M. A., Howe, B., and Scholle, P. A. 1996. Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, United States of America. Geology, 24:799802.2.3.CO;2>CrossRefGoogle Scholar
Kiel, S. 2006. New records and species of molluscs from Tertiary cold-seep carbonates in Washington State, United States of America. Journal of Paleontology, 80:121137.CrossRefGoogle Scholar
Kiel, S. and Little, C. T. S. 2006. Cold-seep mollusks are older than the general marine mollusk fauna. Science, 313(5792):14291431.CrossRefGoogle Scholar
Krylova, E. M., and Sahling, H. 2006. Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae). Journal of Molluscan Studies, 72:359395.CrossRefGoogle Scholar
Latreille, P. A. 1802–1803. Histoire naturelle, générale et particulière, des crustacés et des insectes, Volume 3. F. Dufart, Paris.Google Scholar
MacLeay, W. S. 1838. On the Brachyurous Decapod Crustacea brought from the Cape by Dr. Smith, p. 5371, 2 pls. In Smith, A. (ed.), Illustrations of the Annulosa of South Africa; consisting chiefly of Figures and Descriptions of the Objects of Natural History Collected during an Expedition into the Interior of South Africa, in the Years 1834, 1835, and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa.” Smith, Elder and Company, London.Google Scholar
Martin, J. W. and Haney, T. A. 2005. Decapod crustaceans from hydrothermal vents and cold seeps: A review through 2005. Zoological Journal of the Linnean Society, 145:445522.CrossRefGoogle Scholar
McLaughlin, P. A. 1980. Comparative morphology of Recent Crustacea. W. H. Freeman and Co., San Francisco.Google Scholar
McLean, J. H. 1985. Preliminary report on the limpets at hydrothermal vents. Bulletin of the Biological Society of Washington, 6:159166.Google Scholar
Metz, C. L. 2002. Ancient hydrocarbon emission sites, North American Western Interior Cretaceous Basin cold-seep mounds (Tepee Buttes); geographic, stratigraphic, and age distribution. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists, 2002:120.Google Scholar
Miyake, H., Kitada, M., Tsuchida, S., Okuyama, Y. and Kakamura, K. 2007. Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure. Marine Ecology, 28:8692.CrossRefGoogle Scholar
Morgan, V., Bash, E., Close, H. G., Dahl, R. M., Parsons-Hubbard, K., and Rudolph, R. 2005. Faunal analysis and paleoecology of the Cretaceous Tepee Butte limestones, central Colorado. Geological Society of America 2005 Annual Meeting Abstracts with Programs, 37(7):138.Google Scholar
Newman, W. A. 1985. The abyssal hydrothermal vent invertebrate fauna: A glimpse of antiquity? Bulletin of the Biological Society of Washington, 6:231242.Google Scholar
Ohta, S. and Kim, D. 2001. Submersible observations of the hydrothermal vent communities on the Iheya Ridge, Mid Okinawa Trough, Japan. Journal of Oceanography, 57:663677.CrossRefGoogle Scholar
Ortmann, A. 1892. Die Dekapoden-Krebse des Strassburger Museums IV. Die Abtheilungen Galatheidea und Paguridea. Zoologischen Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Tiere, 6:241326, pls. 11–12.Google Scholar
Peckmann., J., Senowbari-Daryan, B., Birgel, D., and Goedert, J. L. 2007. The crustacean ichnofossil Palaxius associated with callianassid body fossils in an Eocene methane-seep limestone, Humptulips Formation, Olympic Peninsula, Washington. Lethaia, 40:273280.CrossRefGoogle Scholar
Peckmann, J. B., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L., and Reitner, J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): Microbially induced authigenic carbonates. International Journal of Earth Sciences, 88:6075.CrossRefGoogle Scholar
Powell, E. N., Callender, W. R., and Stanton, R. J. Jr. 1998. Can shallow- and deep-water chemoautotrophic and heterotrophic communities be discriminated in the fossil record? Palaeogeography, Palaeoclimatology, Palaeoecology, 144:85114.CrossRefGoogle Scholar
Prothero, D. R., Armentrout, J. M., and Pearson, P. 2001. Magnetic stratigraphy of the upper Middle Eocene (Ulatisian-Narizian) Humptulips Formation, Grays Harbor County, Washington, p. 96105. In Prothero, D. L. (ed.), Magnetic Stratigraphy of the Pacific Coast Cenozoic. Pacific Section SEPM Book 91.Google Scholar
Rau, W. W. 1984. The Humptulips Formation—a new Eocene formation of southwest Washington. Washington Geologic Newsletter, 12(4):15.Google Scholar
Samouelle, G. 1819. The entomologist's useful compendium, or an introduction to the British insects, etc. T. Boys, London, 496 p.Google Scholar
Schweitzer, C. E. and Feldmann, R. M. 2000. First notice of the Chirostylidae (Decapoda) in the fossil record and new Tertiary Galatheidae (Decapoda) from the Americas. Bulletin of the Mizunami Fossil Museum, 27:147165.Google Scholar
Schweitzer, C. E. and Feldmann, R. M. 2005. Decapods, the Cretaceous-Palaeogene Boundary, and Recovery, p 1753. In Koenemann, S. and Jenner, R. A. (eds.), Crustacea and Arthropod Relationships, Crustacean Issues Volume 16. Taylor and Francis Group, Boca Raton, Florida.CrossRefGoogle Scholar
Schweitzer, C. E., Nyborg, T. G., Feldmann, R. M., and Ross, R. L. M. 2004. Homolidae de Haan, 1839 and Homolodromiidae Alcock, 1900 (Crustacea: Decapoda: Brachyura) from the Pacific Northwest of North America and a reassessment of their fossil records. Journal of Paleontology, 78:133149.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, R. S. 2004. Evaporites, water and life—Pt. 2. Recognition of fossil prokaryotes in Cretaceous and methane seep carbonates: Relevance to astrobiology. Astrobiology, 4:438449.CrossRefGoogle Scholar
Shapiro, R. S., and Fricke, H. 2003. Microbial fossil record from the Tepee Buttes (Upper Cretaceous, Colorado). Geological Society of America 2003 Annual Meeting Abstracts with Programs, 35(6):381.Google Scholar
Shapiro, R. S., and Gale, C. N. 2001. Bacterial fossils from Cretaceous methane-seep carbonates. Geological Society of America 2001 Annual Meeting Abstracts with Programs, 33(6):453.Google Scholar
Sibuet, M., and Olu, K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II, 45:51567.CrossRefGoogle Scholar
Squires, R. L. and Goedert, J. L. 1991. New late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. Journal of Paleontology, 65:412416.CrossRefGoogle Scholar
Squires, R. L. and Goedert, J. L. 1995. An extant species of Leptochiton (Mollusca: Polyplacophora) in Eocene and Oligocene cold-seep limestones, Olympic Peninsula, Washington. The Veliger, 38:4753.Google Scholar
Tunnicliffe, V. 1992. The nature and origin of the modern hydrothermal vent fauna. Palaios, 7:338350.CrossRefGoogle Scholar
Tunnicliffe, V. and Fowler, C. M. R. 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature, 379:531533.CrossRefGoogle Scholar
Van Dover, C. L. 2000. The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, New Jersey.Google Scholar
Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek, R. C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295(5558):12531257.CrossRefGoogle ScholarPubMed
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New Eocene hydrocarbon seep decapod crustacean (Anomura: Galatheidae: Shinkaiinae) and its paleobiology
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New Eocene hydrocarbon seep decapod crustacean (Anomura: Galatheidae: Shinkaiinae) and its paleobiology
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New Eocene hydrocarbon seep decapod crustacean (Anomura: Galatheidae: Shinkaiinae) and its paleobiology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *