Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-6zkrn Total loading time: 0.727 Render date: 2023-02-06T14:21:33.179Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Drilling predation on spatangoid echinoids from the Miocene of Sardinia: a taphonomic and paleoecological perspective

Published online by Cambridge University Press:  25 April 2022

Andrea Mancosu*
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, 09127 Cagliari, Italy Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
James H. Nebelsick
Affiliation:
Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, D-72076 Tübingen, Germany
Carla Buosi
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, 09127 Cagliari, Italy Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
*
*Corresponding author.

Abstract

Predation is of great importance in understanding the diversification of spatangoid echinoids as well as their preservation in the fossil record. Herein, the spatangoid-dominated Miocene carbonate succession of Punta Foghe (Montiferru area, central-western Sardinia, Italy) is studied with the aim of reconstructing paleoenvironmental conditions and investigating abiotic and biotic factors, including predation, that influence the paleoecology and preservation potential of spatangoid echinoids.

The echinoid fauna is dominated by the spatangoid Agassizia and, to a lesser extent, the clypeasteroid Clypeaster. The fauna also includes both regular (undetermined diadematoids and camarodonts) and irregular (Plagiobrissus, Echinocyamus, and Koehleraster) forms. Echinoids and associated fossil content, along with taphonomic and sedimentological signatures, indicate an inner sublittoral environment with moderate energy conditions affected by high-energy events. Agassizia remains, which consist mainly of complete and well-preserved tests, commonly bear subcircular drill holes that are interpreted as the result of cassid gastropod predation and investigated with respect to size selectivity and stereotypy of attack sites. Potential biases related to drilling predation and biostratinomy on the preservation potential of spatangoid tests are discussed.

Agassizia lacks any morphological adaptation to minimize high predation risk, including defensive spines and the ability to burrow deeply into the sediment. An antipredator behavior possibly relied on a gregarious life-history strategy, reducing the frequency of attacks on specific individuals by cassid predators.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A., 1869, Preliminary report on the echini and star-fishes dredged in deep water between Cuba and the Florida Reef, by L. F. de Pourtalès, Assist. U.S. Coast Survey: Bulletin of the Museum of Comparative Zoölogy at Harvard College, v. 1, p. 253308.Google Scholar
Alvarado, J.J., Solis-Marin, F.A., and Ahearn, C.G., 2010, Echinoderm (Echinodermata) diversity in the Pacific coast of Central America: Marine Biodiversity, v. 40, p. 4556.CrossRefGoogle Scholar
Arachchige, G.M., Jayakody, S., Mooi, R., and Kroh, A., 2019, Taxonomy and distribution of irregular echinoids (Echinoidea: Irregularia) from Sri Lanka: Zootaxa, v. 4541, https://doi.org/10.11646/zootaxa.4541.1.1CrossRefGoogle ScholarPubMed
Assorgia, A., Barca, S., and Spano, C., 1997a, Lineamenti stratigrafici, tettonici e magmatici del Terziario della Sardegna, in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La “Fossa sarda” nell'ambito dell'evoluzione geodinamica cenozoica del Mediterraneo occidentale: Libro guida e riassunti, Villanovaforru (Ca), 19–22 Giugno, p. 1325.Google Scholar
Assorgia, A., Barca, S., Mighela, P., Muntoni, A., Murgia, G., Porcu, A., Rizzo, R., Rombi, G., and Spano, C., 1997b, La successione vulcano-sedimenatria Oligo-miocenica del settore compreso tra Bosa e Santa Caterina di Pittinuri (Sardegna centro-occidentale), in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La “Fossa sarda” nell'ambito dell'evoluzione geodinamica cenozoica del Mediterraneo occidentale: Libro guida e riassunti, Villanovaforru (Ca), 19–22 Giugno, p. 113114.Google Scholar
Assorgia, A., Barca, S., Porcu, A., and Spano, C., 1997c, Il Miocene sedimentario e vulcanico della Sardegna settentrionale. Inquadramento stratigrafico e riconoscimento di unità deposizionali, in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La “Fossa sarda” nell'ambito dell'evoluzione geodinamica cenozoica del Mediterraneo occidentale: Libro guida e riassunti, Villanovaforru (Ca), 19–22 Giugno, p. 120122.Google Scholar
Banner, F.T., and Hodgkinson, R.L., 1991, A revision of the foraminiferal subfamily Heterostegininae: Revista Espanola de Micropaleontologia, v. 23, p. 101140.Google Scholar
Banno, T., 2008, Ecological and taphonomic significance of spatangoid spines: relationship between mode of occurrence and water temperature: Paleontological Research, v. 12, p. 145157.CrossRefGoogle Scholar
Bardhan, S., and Chattopadhyay, D., 2003, The Mesozoic marine revolution: an overview of a biological ‘arms race’: Indian Journal of Earth Sciences, v. 30, p. 128.Google Scholar
Beccaluva, L., Macciotta, G., and Venturelli, G., 1974, Nuovi dati e considerazioni petrogenetiche sulle serie vulcaniche Plio-quaternarie del Montiferro (Sardegna centro-occidentale): Memorie della Società Geologica Italiana, v. 13, p. 539547.Google Scholar
Belaústegui, Z., Muñiz, F., Nebelsick, J.H., Domènech, R., and Martinell, J., 2017, Echinoderm ichnology: bioturbation, bioerosion and related processes: Journal of Paleontology, v. 91, p. 643661.CrossRefGoogle Scholar
Bernstein, B.B., Schroeter, S.C., and Mann, K.H., 1983, Sea urchin (Strongylocentrotus droebachiensis) aggregating behavior investigated by a subtidal multifactorial experiment: Canadian Journal of Fisheries and Aquatic Sciences, v. 40, p. 19751986.CrossRefGoogle Scholar
Betzler, C., Brachert, T.C., and Nebelsick, J.H., 1997, The warm temperate carbonate province: a review of the facies, zonations, and delimitations: Courier Forschungsinstitut Senckenberg, v. 201, p. 8399.Google Scholar
Beu, A.G., Henderson, R.A., and Campbell, S.N., 1972, Notes on the taphonomy and paleoecology of New Zealand tertiary spatangoida: New Zealand Journal of Geology and Geophysics, v. 15, p. 275286.CrossRefGoogle Scholar
Born, I. von., 1778, Index rerum naturalium Musei Cæsarei Vindobonensis. Pars I.ma. Testacea. Verzeichniß der natürlichen Seltenheiten des k. k. Naturalien Cabinets zu Wien. Erster Theil. Schalthiere: Vindobonae, Kraus, p. 458.Google Scholar
Bottero, S., Carboni, S., and Pala, A., 2002, Studio idrogeologico del bacino del Rio di Santa Caterina di Pittinuri (Cuglieri, Sardegna Centro-Occidentale): Rendiconti Seminario Facoltà Scienze Università Cagliari, v. 72, p. 135.Google Scholar
BouDagher-Fadel, M.K., Lord, A.R., and Banner, F.T., 2000, Some Miogypsinidae (foraminifera) in the Miocene of Borneo and nearby countries: Revue de Paléobiology, v. 19, p. 137156.Google Scholar
Bromley, R.G., 1981, Concepts in ichnotaxonomy illustrated by small round holes in shells: Acta Geologica Hispanica, v.16, p. 5564.Google Scholar
Carboni, S., Lecca, L., and Tilocca, G., 2010, Analisi stratigrafico-morfologica e censimento dei processi franosi in atto sulle coste alte nel settore costiero compreso tra Capo San Marco e Capo Marrargiu (Sardegna centro-occidentale): Cagliari, Università di Cagliari, Dipartimento di Scienze della Terra, Provincia di Oristano, Assessorato alla Difesa dell'Ambiente, 625 p.Google Scholar
Carmignani, L., Oggiano, G., Barca, S., Conti, P., Salvadori, I., Eltrudis, A., Funedda, A., and Pasci, S., 2001, Geologia della Sardegna. Note illustrative della Carta Geologica in scala 1:200.000: Memorie Descrittive della Carta Geologica d'Italia, Istituto Poligrafico Zecca dello Stato, Roma, v. 60, 283 p.Google Scholar
Carminati, E., Lustrino, M., and Doglioni, C., 2012, Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints: Tectonophysics, v. 579, p. 173192.CrossRefGoogle Scholar
Caron, V., Bailleul, J., Chanier, F., and Mahieux, G., 2019, Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian–Bartonian limestones, St. Bartholomew, French West Indies): Sedimentary Geology, v. 387, p. 104125.CrossRefGoogle Scholar
Cherchi, A., and Montadert, L., 1982, Il sistema di rifting oligo-miocenico del Mediterraneo occidentale e sue conseguenze paleogeografiche sul Terziario sardo: Memorie della Società Geologica Italiana, v. 24, p. 387400.Google Scholar
Cherchi, A., Mancin, N., Montadert, L., Murru, M., Putzu, M.T., Schiavinotto, F., and Verrubbi, V., 2008, The stratigraphic response to the Oligo–Miocene extension in the western Mediterranean from observations on the Sardinia graben system (Italy): Bulletin de la Société Géologique de France, v. 179, p. 267287.CrossRefGoogle Scholar
Chesher, R.H., 1969, Contributions to the biology of Meoma ventricosa (Echinoidea: Spatangoida): Bulletin of Marine Science, v. 19, p. 72110.Google Scholar
Chesher, R.H., 1972, The status of knowledge of Panamanian echinoids, 1971, with comments on other echinoderms: Bulletin of the Biological Society Washington, v. 2, p. 139158.Google Scholar
Comaschi Caria, I., 1951, Osservazioni paleontologico-stratigrafiche sul Miocene e sul Quaternario marino della zona di Pittinuri a nord-ovest del Golfo di Oristano: Rendiconti Seminario Facoltà di Scienze Università di Cagliari, v. 20, p. 116.Google Scholar
Comaschi Caria, I., 1972, Gli echinidi del Miocene della Sardegna: Cagliari, S.T.E.F. S.p.A. ed., 95 p.Google Scholar
David, B., Mooi, R., Néraudeau, D., Saucede, T., and Villier, L., 2009, Evolution et radiations adaptatives chez les échinides: Comptes Rendus Palevol, v. 8, p. 189207.CrossRefGoogle Scholar
De Loriol, P., 1883, Catalogue Raisonne des Échinodermes recueillis par M. V. Robillard a l’île Maurice: Mémoires de la Société de Physique et d'Histoire Naturelle de Genève, v. 28, p. 164.Google Scholar
Dexter, T.A., 2011, Predation on regular and irregular echinoids by cassid gastropods on San Salvador Island, the Bahamas: Geological Society of America Abstracts with Programs, v. 43, p. 382.Google Scholar
Eder, W., Hohenegger, J., Torres-Silva, A.I., and Briguglio, A., 2016, Morphometry of the larger foraminifer Heterostegina explaining environmental dependence, evolution and paleogeographic diversification, in Birkeland, C., Coles, S.L., and Spies, N.P., eds., Proceedings of the 13th International Coral Reef Symposium, Honolulu, Hawaii: International Society for Reef Studies, p. 185196.Google Scholar
Engstrom, N.A., 1982, Immigration as a factor in maintaining populations of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea) in seagrass beds on the southwest coast of Puerto Rico: Studies on Neotropical Fauna and Environment, v. 17, p. 5160.CrossRefGoogle Scholar
Ernst, G., Hähnel, W., and Seibertz, E., 1973, Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen: Paläontologische Zeitschrift, v. 47, p. 188216.CrossRefGoogle Scholar
Faccenna, C., Speranza, F., D'Ajello Caracciolo, F., Mattei, M., and Oggiano, G., 2002, Extensional tectonics on Sardinia (Italy): insights into the arc–back-arc transitional regime: Tectonophysics, v. 356, p. 213232.CrossRefGoogle Scholar
Farrar, L., Graves, E., Petsios, E., Portell, R.W., Grun, T.B., Kowalewski, M., and Tyler, C.L., 2020, Characterization of traces of predation and parasitism on fossil echinoids: Palaios, v. 35, p. 215227.CrossRefGoogle Scholar
Ferber, I., and Lawrence, J.M., 1976, Distribution, substratum preference and burrowing behaviour of Lovenia elongata (Gray) (Echinoidea: Spatangoida) in the Gulf of Elat ('Aqaba), Red Sea: Journal of Experimental Marine Biology and Ecology, v. 22, p. 207225.CrossRefGoogle Scholar
Foster, W.A., and Treherne, J.E., 1981, Evidence for the dilution effect in the selfish herd from fish predation on a marine insect: Nature, v. 293, p. 466467.CrossRefGoogle Scholar
Funedda, A., Oggiano, G., and Pasci, S., 2000, The Logudoro basin: a key area for the tertiary tectono-sedimentary evolution of North Sardinia: Bollettino della Società Geologica Italiana, v. 119, p. 3138.Google Scholar
Funedda, A., Oggiano, G., and Pascucci, V., 2003, I depositi Miocenici della Sardegna settrentionale: il bacino Logudoro, in Pascucci, V., ed., Atti del Convegno GEOSED 2003: Sassari, Italy, Editoria e Stampa, p. 381414.Google Scholar
Galván-Villa, C.M., Rubio-Barbosa, E., and Martínez-Melo, A., 2018, Riqueza y distribución de equinoideos irregulares (Echinoidea: Cassiduloida, Clypeasteroida, Holasteroida y Spatangoida) del Pacífico central mexicano: Hidrobiológica, v. 28, p. 8391.CrossRefGoogle Scholar
Gerace, D.T., and Lindsay, W., 1992, Cassis in captivity: an ongoing research project, in Gerace, D.T., ed., Proceedings of the 4th Symposium of the Natural History of the Bahamas: San Salvador, Bahamian Field Station, p. 5966.Google Scholar
Ghiold, J., 1982, Observations on the clypeasteroid Echinocyamus pusillus (O.F. Müller): Journal of Experimental Marine Biology and Ecology, v. 61, p. 5774.CrossRefGoogle Scholar
Ghiold, J., 1989, Species distributions of irregular echinoids: Biological Oceanography, v. 6, p. 79162.Google Scholar
Gibson, M.A, and Watson, J.B., 1989, Predatory and non-predatory borings in echinoids from the upper Ocala Formation (Eocene), North-Central Florida, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 71, p. 309321.CrossRefGoogle Scholar
Gladfelter, W.B., 1978, General ecology of the Cassiduloid urchin Cassidulus caribbearum: Marine Biology, v. 47, 149160.CrossRefGoogle Scholar
Gmelin, J.F., 1791, Vermes, in Gmelin, J.F., ed., Caroli a Linnaei Systema Naturae per Regna Tria Naturae (thirteenth edition), Volume 1: Lipsiae, G.E. Beer, p. 30213910.Google Scholar
Gondim, A.I., De Moura, R.B., Christoffersen, M.L., and Pereira Dias, T.L., 2018, Taxonomic guide and historical review of echinoids (Echinodermata: Echinoidea) from northeastern Brazil: Zootaxa, v. 4529, https://doi.org/10.11646/zootaxa.4529.1.1CrossRefGoogle ScholarPubMed
Gray, J.E., 1845, Description of two new invertebrated animals from Australia, in Eyre, E.J., ed., Journals of Expeditions of Discovery into Central Australia and Overland from Adelaide to King Georg's Sound in 1840–41, Volume 1: London, T. & W. Boone, p. 435436.Google Scholar
Greenstein, B.J., 1993, The effect of life habit on the preservation potential of echinoids, in White, B.N., ed., Proceedings of the 6th Symposium on the Geology of the Bahamas: San Salvador, Bahamian Field Station, p. 5574.Google Scholar
Grun, T.B., 2016, Echinoid test damage by a stingray predator: Lethaia, v. 49, p. 285286.CrossRefGoogle Scholar
Grun, T.B., 2017, Recognizing traces of snail predation on the Caribbean sand dollar Leodia sexiesperforata: Palaios, v. 32, p. 448461.CrossRefGoogle Scholar
Grun, T., and Nebelsick, J.H., 2015, Sneaky snails: how drillholes can affect paleontological analyses of the minute Clypeasteroid echinoid Echinocyamus, in Zamora, S., and Rabano, I., eds., Progress in Echinoderm Paleobiology: Madrid, Publicaciones del Instituto Geologico y Minero de Espana, p. 7174.Google Scholar
Grun, T., Sievers, D., and Nebelsick, J.H., 2014, Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy): Historical Biology, v. 26, p. 745757.CrossRefGoogle Scholar
Guerrera, F., Mattioli, M., Serrano, F., Tramontana, M., and Raffaelli, G., 2004, Stratigraphy of the Miocene syn-rift volcano-sedimentary succession in a sector of the central-southern Sardinia trough (Italy): Geologica Carpathica, v. 55, 5163.Google Scholar
Hallock, P., 1999, Symbiont-bearing foraminifera, in Sen Gupta, B., ed., Modern Foraminifera: Boston, Kluwer-Academic, p. 123139.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological Statistics Software Package for Education and Data Analysis: Palaeontologia Electronica, v. 4, no. 1, http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Hendler, G., 1977, The differential effects of seasonal stress and predation on the stability of reef-flat echinoid populations, in Taylor, D.L., ed., Proceedings of the 3rd International Coral Reef Symposium, v. 1., Biology: Miami, Rosenstiel School of Marine and Atmospheric Science, University of Miami, p. 217223.Google Scholar
Hendler, G., Miller, J., Pawson, D., and Porter, K., 1995, Sea Stars, Sea Urchins, and Allies: Echinoderms of Florida and the Caribbean: Washington, D.C., Smithsonian Institution Press, 390 p.Google Scholar
Hohenegger, J., 1994, Distribution of living larger foraminifera NW of Sesoko-Jima, Okinawa, Japan: Marine Ecology, v. 15, p. 291334.CrossRefGoogle Scholar
Hottinger, L., 1983, Processes determining the distribution of larger foraminifera in space and time: Utrecht Micropaleontol Bulletin, v. 30, p. 239253.Google Scholar
Hottinger, L., 1997, Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations: Bulletin de la Société Géologique de France, v. 168, p. 491505.Google Scholar
Hughes, R.N., 1986, Laboratory observations on the feeding behaviour, reproduction and morphology of Galeodea echinophora (Gastropoda: cassidae): Zoological Journal of the Linnean Society, v. 86, p. 355365.CrossRefGoogle Scholar
Hughes, R.N., and Hughes, H.P.I., 1971, A study of the gastropod Cassis tuberosa (L.) preying upon sea urchins: Journal of Experimental Marine Biology and Ecology, v. 7, p. 305314.CrossRefGoogle Scholar
Hughes, R.N., and Hughes, H.P.I., 1981, Morphological and behavioural aspects of feeding in the Cassidae (Tonnacea, Mesogastropoda): Malacologia, v. 20, p. 385402.Google Scholar
Kanazawa, K., 1992, Adaptation of test shape for burrowing and locomotion in spatangoid echinoids: Palaeontology, v. 35, p. 733750.Google Scholar
Kanazawa, K. 2004, An evolutionary breakthrough to new modes of life in spatangoid echinoids, in Heinzeller, T., and Nebelsick, J.H., eds., Echinoderms: Munchen: Proceedings of the 11th International Echinoderm Conference, 6–10 October 2003: Munich, A.A. Balkema, p. 588.Google Scholar
Kanazawa, K., 2010, Adaptive evolution in Cenozoic spatangoid echinoids, in Reich, M., Reitner, J., Roden, V., and Thuy, B., eds., Echinoderm Research 2010: 7th European Conference on Echinoderms: Abstract Volume and Field Guide to Excursions: Göttingen, University Press, p. 6061.Google Scholar
Kidwell, S.M., and Holland, S.M., 1991, Field description of coarse bioclastic fabrics: Palaios, v. 6, p. 426434.CrossRefGoogle Scholar
Kidwell, S.M., Fürsich, F.T., and Aigner, T., 1986, Conceptual framework for the analysis and classification of fossil concentrations: Palaios, v. 1, p. 228238.CrossRefGoogle Scholar
Kier, P.M., 1974, Evolutionary trends and their functional significance in the post-Paleozoic echinoids: Journal of Paleontology, v. 48, p. 195.CrossRefGoogle Scholar
Kier, P.M., 1977, The poor fossil record of the regular echinoid: Paleobiology, v. 3, p. 168174.CrossRefGoogle Scholar
Kier, P.M., 1981, A bored Cretaceous echinoid: Journal of Paleontology, v. 55, p. 656659.Google Scholar
Kier, P.M., 1984, Fossil spatangoid echinoids of Cuba. Smithsonian Contributions to Paleobiology v. 55: Washington D.C., Smithsonian Institution Press, p. 1336.Google Scholar
Kier, P.M., and Grant, R.E., 1965, Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida: Smithsonian Miscellaneous Collections, v. 149, p. 168.Google Scholar
Kowalewski, M., and Nebelsick, J.H., 2003, Predation on Recent and fossil echinoids, in Kelley, P.H., Kowalewski, M., and Hansen, T.A., eds., Predator–Prey Interactions in the Fossil Record: New York, Kluwer Academic/Plenum, p. 279302.CrossRefGoogle Scholar
Kroh, A., 2003, Palaeobiology and biogeography of a Danian echinoid fauna of Lower Austria, in Féral, J.P., and David, B., eds., Echinoderm Research 2001: Proceedings of the 6th European Conference Echinoderms Researches, Banyuls/France/3–7 Sept. 2001: Lisse, Swets & Zeitlinger, p. 6975.Google Scholar
Kroh, A., and Nebelsick, J.H., 2003, Echinoid assemblages as a tool for palaeoenvironmental reconstruction—an example from the early Miocene of Egypt: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 201, p. 157177.CrossRefGoogle Scholar
Kroh, A., and Smith, A.B., 2010, The phylogeny and classification of post-Palaeozoic echinoids: Journal of Systematic Palaeontology, v. 8, p. 147212.CrossRefGoogle Scholar
Lamarck, J.B.P.A., 1816, Histoire naturelle des animaux sans vertebres, v. 2 e 3: Paris, Verdière, 586 p.Google Scholar
Lamarck, J.B.P.A., 1822, Histoire naturelle des animaux sans vertèbres, v. 7: Paris, Verdière, 711 p.Google Scholar
Lane, D.J.W., Marsh, L.M., VandenSpiegel, D., and Rowe, F.W.E., 2000, Echinoderm fauna of the South China Sea: an inventory and analysis of distribution patterns: Raffles Bulletin of Zoology, v. 8, p. 459493.Google Scholar
Langer, M.R., and Hottinger, L., 2000, Biogeography of selected “larger” foraminifera: Micropaleontology, v. 46, p. 105126.Google Scholar
Lawrence, J.M., and Ferber, I., 1971, Substrate particle size and the occurrence of Lovenia elongata (Echinodermata: Echinoidea) at Taba, Gulf of Elat (Red Sea): Israel Journal of Zoology, v. 20, p. 131138.Google Scholar
Lehtonen, J., and Jaatinen, K., 2016, Safety in numbers: the dilution effect and other drivers of group life in the face of danger: Behavioral Ecology and Sociobiology, v. 70, p. 449458.CrossRefGoogle Scholar
Lessios, H.A., 2005, Echinoids of the Pacific waters of Panama: Status of knowledge and new records: Revista de Biología Tropical, v. 53, p. 147170.Google ScholarPubMed
Lindsay, W.J. Jr., 1996, Changing abundances of Cassis tuberosa and its echinoid prey on San Salvador, 1973–1995, in Elliott, N.B., Craig Edwards, D., and Godfrey, P.J., eds., Proceedings of the 6th Symposium of the Natural History of the Bahamas: San Salvador, Bahamian Field Station, p. 121125.Google Scholar
Linnaeus, C., 1758, Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Editio decima, reformata, Volume 1: Holmiae, Laurentius Salvius, 824 p.Google Scholar
Lokier, S.W., and Al Junaibi, M., 2016, The petrographic description of carbonate facies: are we all speaking the same language?: Sedimentology, v. 63, p. 18431885.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2013, Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoid beds of Sardinia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 374, p. 173186.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2015, The origin and paleoecology of clypeasteroid assemblages from different shelf settings of the Miocene of Sardinia, Italy: Palaios, v. 30, p. 373387.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2016, Echinoid assemblages from the early Miocene of Funtanazza (Sardinia): a tool for reconstructing depositional environments along a shelf gradient: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 454, p. 139160.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2017a, Palaeoecology and taphonomy of spatangoid-dominated echinoid assemblages: a case study from the early–middle Miocene of Sardinia, Italy: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 466, p. 334352.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2017b, Ecomorphological and taphonomic gradient of clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic–carbonate shelf from the early Miocene of northern Sardinia, Italy: Acta Palaeontologica Polonica, v. 62, p. 627646.CrossRefGoogle Scholar
Mancosu, A., and Nebelsick, J.H., 2019, Hard vs. soft substrates: reconstructing the paleoecology of echinoid dominated sublittoral environments—a case study from the Miocene of Sardinia: Journal of Paleontology, v. 93, p. 764784.CrossRefGoogle Scholar
Mancosu, A., Nebelsick, J.H., Kroh, A., and Pillola, G.L., 2015, The origin of echinoid shell beds in siliciclastic shelf environments: three examples from the Miocene of Sardinia, Italy: Lethaia, v. 48, p. 8399.CrossRefGoogle Scholar
Martínez, S., and Del Rio, C.J., 2017, A supplementary description of Brisaster iheringi (Spatangoida: Schizasteridae) from the Miocene of Patagonia Argentina: Revista de Biología Tropical, v. 65, p. 137146.CrossRefGoogle Scholar
Mazzei, R., and Oggiano, G., 1990, Messa in evidenza di due cicli sedimentari nel Miocene dell'area di Florinas (Sardegna Settentrionale): Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, v. 97, p. 119147.Google Scholar
Mazzetti, G., 1893, Catalogo degli Echinidi del Mar Rosso: Atti della Società dei Naturalisti di Modena, v. 12, p. 238243.Google Scholar
McClintock, J.B., and Marion, K.R., 1993, Predation by the king helmet (Cassis tuberosa) on six-holed sand dollars (Leodia sexiesperforata) at San Salvador, Bahamas: Bulletin of Marine Science, v. 52, p. 10131017.Google Scholar
McKee, E.D., Oriel, S.S., Ketner, K.B., MacLachlan, M.E., Goldsmith, J.W., MacLachlan, J.C., and Mudge, M.R., 1959, Paleotectonic maps of the Triassic System: United States Geological Survey, Miscellaneous Geologic Investigations Map, Nevada, I-300, p. 133.Google Scholar
McKinney, M.L., and McNamara, K.J., 1991, Heterochrony: The Evolution of Ontogeny: New York, Plenum Press, p. 437.CrossRefGoogle Scholar
McNamara, K.J., 1994, The significance of gastropod predation to patterns of evolution and extinction in Australian Tertiary echinoids, in David, B., Guille, A., Féral, J.-P., and Roux, M., eds., Echinoderms Through Time. Proceedings of the 8th International Echinoderm Conference, Dijon, France, 6–10 September 1993: Rotterdam, A.A. Balkema, p. 785793.Google Scholar
Michelin, H., 1861, Monographie de Clypéastres fossiles: Mémoires de la Société Géologique de France, v. 7, 101147.Google Scholar
Mighela, P., Muntoni, A., Assorgia, A., Porcu, A., and Spano, C., 1997, Le successioni sedimentarie mioceniche affioranti nel Bosano-Planargia-Montiferru (Sardegna Centro-Occidentale), in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La “Fossa sarda” nell'ambito dell'evoluzione geodinamica cenozoica del Mediterraneo occidentale: Libro guida e riassunti, Villanovaforru (Ca), 1922 Giugno, p. 146.Google Scholar
Miller, J.M., and Walker, S.E., 2009, Evolutionary implications of gastropod predation on irregular echinoids representing different ecological burrowing tiers, late Eocene, Florida: Geological Society of America, Abstracts with Programs, GSA Annual Meeting (18–21 October 2009), Portland, v. 41, p. 390.Google Scholar
Mongiardino Koch, N., and Thompson, J.R., 2021, A total-evidence dated phylogeny of Echinoidea combining phylogenomic and paleontological data: Systematic Biology, v. 70, p. 421439.CrossRefGoogle ScholarPubMed
Moore, D.R., 1956, Observations of predation on echinoderms by three species of Cassidae: Nautilus, v. 69, p. 7376.Google Scholar
Morishita, V.R., and Barreto, R.E., 2011, Black sea urchins evaluate predation risk using chemical signals from a predator and injured con- and heterospecific prey: Marine Ecology Progress Series, v. 435, p. 173181.CrossRefGoogle Scholar
Mortensen, T., 1948a, A Monograph of the Echinoidea, IV, 1. Holectypoida, Cassiduloida: Copenhagen, C.A. Reitzel, 371 p.Google Scholar
Mortensen, T., 1948b, A Monograph of the Echinoidea, IV, 2. Clypeastroida. Clypeastridæ, Arachnoidæ, Fibulariidæ, Laganidæ and Scutellidæ: Copenhagen, C.A. Reitzel, 471 p.Google Scholar
Mortensen, T., 1951, A Monograph of the Echinoidea. V, 2. Spatangoida II. Amphisternata II. Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ: Copenhagen, C.A. Reitzel, 593 p.Google Scholar
Müller, O.F., 1776, Zoologiæ Danicæ Prodromus, seu Animalium Daniæ et Norvegiæ indigenarum characteres, nomina, et synonyma imprimis popularium: Havniæ, Hallageri, 274 p.Google Scholar
Murray, J.W., 1973, Distribution and Ecology of Living Benthic Foraminiferids: London, Heinemann, 274 p.Google Scholar
Nebelsick, J.H., 1992a, The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. III Distribution of echinoids: Beiträge zur Paläontologie von Österreich, v. 17, p. 579.Google Scholar
Nebelsick, J.H., 1992b, Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea, Egypt: Palaios, v. 7, p. 316328.CrossRefGoogle Scholar
Nebelsick, J.H., 1999, Taphonomic legacy of predation on echinoids, in Carnevali, C., and Bonasoro, F., eds., Echinoderm Research 1998: Proceedings of the 5th European Conference on Echinoderms, Milan, Italy, 7–12 September: Rotterdam, Balkema, p. 347352.Google Scholar
Nebelsick, J.H., 2004, Taphonomy of echinoderms: introduction and outlook, in Heinzeller, T., and Nebelsick, J.H., eds., Echinoderms München. Proceedings of the 11th International Echinoderm Meeting: Rotterdam, Taylor & Francis, p. 471478.Google Scholar
Nebelsick, J.H., 2020, Ecology of clypeasteroids, in Lawrence, J.M., ed., Sea Urchins: Biology and Ecology (fourth edition). Development in Aquaculture and Fisheries Science, v. 43: Elsevier, Cambridge Academic Press, p. 315331.CrossRefGoogle Scholar
Nebelsick, J.H., and Kowalewski, M., 1999, Drilling predation on Recent clypeasteroid echinoids from the Red Sea: Palaios, v. 14, p. 127144.CrossRefGoogle Scholar
Nebelsick, J.H., Schmid, B., and Stachowitsch, M., 1997, The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance: Lethaia, v. 30, p. 271284.CrossRefGoogle Scholar
Néraudeau, D., 1991, Lateral variations of size–frequency distribution in a fossil echinoid community and their palaeoecological significance: Lethaia, v. 24, p. 299309.CrossRefGoogle Scholar
Nichols, D., 1959, Changes in the chalk heart-urchin Micraster interpreted in relation to living forms: Philosophical Transactions of the Royal Society of London, ser. B, v. 242, p. 347437.Google Scholar
Nilsonn, H.C., and Rosenberg, R., 1994, Hypoxic response of two marine benthic communities: Marine Ecology Progress Series, v. 115, p. 209217.CrossRefGoogle Scholar
Oggiano, G., Funedda, A., Carmignani, L., and Pasci, S., 2009, The Sardinia–Corsica microplate and its role in the northern Apennine geodynamics: new insights from the Tertiary intraplate strike-slip tectonics of Sardinia: Italian Journal of Geosciences, v. 128, p. 527539.Google Scholar
Palópolo, E.E., Kroh, A., Harzhauser, M., Griffin, M., Casadio, S., and Carmona, N., 2021, An early Miocene spatangoid assemblage on a submarine volcanic ash dune from Patagonia (Argentina): Journal of South American Earth Sciences, v. 108, n. 103214, https://doi.org/10.1016/j.jsames.2021.103214CrossRefGoogle Scholar
Pennant, T., 1777, British Zoology, Crustacea. Mollusca. Testacea, Volume 4: London, Benj. White, 154 p.Google Scholar
Petsios, E., Portell, R.W., Farrar, L., Tennakoon, S., Grun, T.B., Kowalewski, M., and Tyler, C.L., 2021, An asynchronous Mesozoic marine revolution: the Cenozoic intensification of predation on echinoids: Proceedings of the Royal Society B, v. 288, n. 20210400, https://doi.org/10.1098/rspb.2021.0400Google ScholarPubMed
Radwański, A., and Wysocka, A., 2001, Mass aggregation of middle Miocene spine-coated echinoids Echinocardium and their integrated eco-taphonomy: Acta Geologica Polonica, v. 51, p. 295316.Google Scholar
Reiss, Z., and Hottinger, L., 1984, The Gulf of Aqaba: Ecological Micropaleontology: Berlin, Springer-Verlag, 354 p.CrossRefGoogle Scholar
Rose, E.P.F., and Cross, N.E., 1993, The Chalk sea-urchin Micraster: microevolution, adaptation and predation: Geology Today, v. 9, p. 179186.CrossRefGoogle Scholar
Saitoh, M., and Kanazawa, K., 2012, Adaptive morphology for living in shallow water environments in spatangoid echinoids: Zoosymposia, v. 7, p. 255265.CrossRefGoogle Scholar
Saitoh, M., and Kanazawa, K., 2019, Different life histories and life styles in spatangoid echinoids living in the shallow sublittoral zone in the Oki-Islands, Japan: Zoological Science, v. 36, p. 3851.CrossRefGoogle ScholarPubMed
Schäfer, W., 1972, Ecology and palaeoecology of marine environments: Edinburgh, Olivier and Boyd, 569 p.Google Scholar
Scheibling, R.E., 2013, Oreaster reticulatus, in Lawrence, J.M., ed., Starfish: Biology and Ecology of Asteroidea: Baltimore, The Johns Hopkins University Press, p. 142152.Google Scholar
Serafy, D.K., 1979, Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruises, v. 5: St. Petersburg, Florida Department of Natural Resources, Marine Research Laboratory, 120 p.Google Scholar
Sievers, D., Friedrich, J.P., and Nebelsick, J.H., 2014, A feast for crows: bird predation on irregular echinoids from Brittany, France: Palaios, v. 29, p. 8794.CrossRefGoogle Scholar
Sloan, N.A., Clark, A.M., and Taylor, J.D., 1979, The echinoderms of Aldabra and their habitats: Bulletin of the British Museum of Natural History, Zoology, v. 37, p. 81128.Google Scholar
Smith, A.B., 1980, The structure, function, and evolution of tube feet and ambulacral pores in irregular echinoids: Palaeontology, v. 23, p. 3983.Google Scholar
Smith, A.B., 1984, Echinoid Palaeobiology: London, George Allen and Unwin Ltd, 199 p.Google Scholar
Smith, A.B., and Gale, A.S., 2009, The pre-Messinian deep-sea Neogene echinoid fauna of the Mediterranean: surface productivity controls and biogeographical relationships: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 281, p. 115125.CrossRefGoogle Scholar
Smith, A.B., and Kroh, A., eds., 2011, The Echinoid Directory: https://www.nhm.ac.uk/our-science/data/echinoid-directory/ [Oct 2021]Google Scholar
Speranza, F., Villa, I.M., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., and Mattei, M., 2002, Age of the Corsica–Sardinia rotation and Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidences: Tectonophysics, v. 347, p. 231251.CrossRefGoogle Scholar
Stachowitsch, M., 1991, Anoxia in the northern Adriatic Sea: rapid death, slow recovery, in Tyson, R.V., and Pearson, T., eds., Modern and Ancient Continental Shelf Anoxia: Geological Society of London Special Publication, v. 58, p. 119129.Google Scholar
Stara, P., Sanciu, L., and Rizzo, R., 2012, Segnalazione di una associazione ad echinidi con spatangoidi prevalenti in Sardegna: Notiziario della Società Reggiana di Scienze Naturali, v. 2010, p. 2742.Google Scholar
Stockley, B., Smith, A.B., Littlewood, T., Lessios, H.A., and Mackenzie-Dodds, J.A., 2005, Phylogenetic relationships of spatangoid sea urchins (Echinoidea): taxon sampling density and congruence between morphological and molecular estimates: Zoologica Scripta, v. 34, p. 447468.CrossRefGoogle Scholar
Telford, M., 1985, Structural analysis of the test of Echinocyamus pusillus (O.F. Müller), in Keegan, B.F., and O'Conner, B.D.S., eds., Proceedings of the 5th International Echinoderm Conference, Ireland 1984: Rotterdam, A.A. Balkema, p. 353360.Google Scholar
Telford, M., Harold, A.S., and Mooi, R., 1983, Feeding structures, behavior, and microhabitat of Echinocyamus pusillus (Echinoidea: Clypeasteroida): Biological Bulletin, v. 165, p. 745757.CrossRefGoogle Scholar
Tewfik, A., 2014, Losing the shell game: consequences of seascapes without predatory gastropods, in Acosta, A., and LeRoy Creshwell, R., eds., Proceedings of the 67th Gulf and Caribbean Fisheries Institute November 3–7, 2014, Christ Church, Barbados: Fort Pierce, Gulf and Caribbean Fisheries Institute, p. 331338.Google Scholar
Tewfik, A., and Scheuer, B., 2013, Ecology of the king helmet, Cassis tuberosa (L.), in South Caicos: Caribbean Naturalist, v. 2, p. 210.Google Scholar
Thomas, B., and Gennesseaux, M., 1986, A two-stage rifting in the basins of the Corsica–Sardinian Straits: Marine Geology, v. 72, 225239.CrossRefGoogle Scholar
Tortonese, E., 1965, Fauna d'Italia, Volume 6, Echinodermata: Bologne, Italy, Calderini, 424 p.Google Scholar
Tyler, C.L., Dexter, T.A., Portell, R.W., and Kowalewski, M., 2018, Predation-facilitated preservation of echinoids in a tropical marine environment: Palaios, v. 33, p. 478486.CrossRefGoogle Scholar
Valenciennes, A., 1846, Atlas de Zoologie [Zoophytes], in du Petit-Thouars, A., ed., Voyage autour de monde sur la frégate La Vénus, pendant les années 1836–1839: Paris, Gide et Cie.Google Scholar
Vermeij, G.J., 1977, The Mesozoic marine revolution: evidence from snails, predators and grazers: Paleobiology, v. 3, p. 245258.CrossRefGoogle Scholar
Villier, L., and Navarro, N., 2004, Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida (Echinoidea, Echinodermata): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 214, p. 265282.CrossRefGoogle Scholar
Villier, L., Néraudeau, D., Clavel, B., Neumann, C., and David, B., 2004, Phylogeny of Early Cretaceous spatangoids (Echinodermata: Echinoidea) and taxonomic implications: Palaeontology, v. 47, p. 265292.CrossRefGoogle Scholar
Zamora, S., Mayoral, E., Vintaned, J.A.G., Bajo, S., and Espílez, E., 2008, The infaunal echinoid Micraster: taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain: Geobios, v. 41, p. 1529.CrossRefGoogle Scholar
Zavodnik, D., 2003, Marine fauna of Mljet National Park (Adriatic Sea, Croatia) 2: Echinodermata: Acta Adriatica, v. 44, p. 101157.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Drilling predation on spatangoid echinoids from the Miocene of Sardinia: a taphonomic and paleoecological perspective
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Drilling predation on spatangoid echinoids from the Miocene of Sardinia: a taphonomic and paleoecological perspective
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Drilling predation on spatangoid echinoids from the Miocene of Sardinia: a taphonomic and paleoecological perspective
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *