Skip to main content Accessibility help
Hostname: page-component-59df476f6b-h4h8l Total loading time: 0.577 Render date: 2021-05-17T19:38:46.612Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A divergence dating analysis of turtles using fossil calibrations: an example of best practices

Published online by Cambridge University Press:  14 July 2015

Walter G. Joyce
Institut für Geowissenschaften, University of Tübingen, 72076 Tübingen, Germany, <> Yale Peabody Museum of Natural History, New Haven, CT 06511, USA
James F. Parham
John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University at Fullerton, Fullerton, CA 92834, USA
Tyler R. Lyson
Yale Peabody Museum of Natural History, New Haven, CT 06511, USA Department of Vertebrate Zoology, Smithsonian Institution, Washington DC 20013, USA Marmarth Research Foundation, Marmarth, ND 58643, USA
Rachel C. M. Warnock
National Evolutionary Synthesis Center, Durham, NC 27705, USA Department of Earth Sciences, University of Bristol, Bristol, UK
Philip C. J. Donoghue
Department of Earth Sciences, University of Bristol, Bristol, UK


Turtles have served as a model system for molecular divergence dating studies using fossil calibrations. However, because some parts of the fossil record of turtles are very well known, divergence age estimates from molecular phylogenies often do not differ greatly from those observed directly from the fossil record alone. Also, the phylogenetic position and age of turtle fossil calibrations used in previous studies have not been adequately justified. We provide the first explicitly justified minimum and soft maximum age constraints on 22 clades of turtles following best practice protocols. Using these data we undertook a Bayesian relaxed molecular clock analysis establishing a timescale for the evolution of crown Testudines that we exploit in attempting to address evolutionary questions that cannot be resolved with fossils alone. Some of these questions, such as whether the turtle crown originated in the Triassic or Jurassic, cannot be resolved by our analysis. However, our results generate novel age-of-origination estimates for clades within crown Testudines. Finally, we compare our fossil calibrations and posterior age estimates to those from other studies, revealing substantial differences in results and interpretation.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.


Anderson, J. S. 2012. Fossils, molecules, divergence times, and the origin of Salamandroidea. Proceedings of the National Academy of Sciences, 109:55575558.CrossRefGoogle ScholarPubMed
Andrews, C. W. 1914. On the lower Miocene vertebrates from British East Africa collected by Dr. Felix Oswald. Quarterly Journal of the Geological Society, 70:163187.CrossRefGoogle Scholar
Anquetin, J. 2012. Reassessment of the phylogenetic interrelationships of basal turtles (Testudinata). Journal of Systematic Palaeontology, 10:345.CrossRefGoogle Scholar
Anquetin, J., Barrett, P. M., Jones, M. E. H., Moore-Fay, S., and Evans, S. E. 2009. A new stem turtle from the Middle Jurassic of Scotland: New insights into the evolution and palaeoecology of basal turtles. Proceedings of the Royal Society B: Biological Sciences, 276:879886.CrossRefGoogle ScholarPubMed
Barley, A. J., Spinks, P. Q., Thomson, R. C., and Shaffer, H. B. 2010. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Molecular Phylogenetics and Evolution, 55:11891194.CrossRefGoogle ScholarPubMed
Belshaw, R. and Katzourakis, A. 2005. BlastAlign: A program that uses blast to align problematic nucleotide sequences. Bioinformatics, 21:122123.CrossRefGoogle ScholarPubMed
Benton, M. J. and Donoghue, P. C. J. 2007. Paleontological evidence to date the Tree of Life. Molecular Biology and Evolution, 24:2653.CrossRefGoogle ScholarPubMed
Benton, M. J., Donoghue, P. C. J., and Asher, R. J. 2009. Calibrating and constraining molecular clocks, p. 3586. InHedges, S. B. and Kumar, S.(eds.), The Timetree of Life. Oxford University Press, Oxford.Google Scholar
Baur, G. 1893. Notes on the classification of the Cryptodira. American Naturalist, 27:672675.Google Scholar
Bona, P. and de la Fuente, M. S. 2005. Phylogenetic and paleobiogeographic implications of Yaminuechelys maior (Staesche, 1929) new comb., a large long-necked chelid turtle from the early Paleocene of Patagonia, Argentina. Journal of Vertebrate Paleontology, 25:569582.CrossRefGoogle Scholar
Bourque, J. R. 2013. Fossil Kinosternidae from the Oligocene and Miocene of Florida, U.S.A., p. 459475. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Bräm, H. 1965. Die Schildkröten aus dem oberen Jura (Malm) der Gegend von Solothurn. Schweizerische Paläontologische Abhandlungen, 83:1190.Google Scholar
Brinkman, D. B. 2003. A review of nonmarine turtles from the Late Cretaceous of Alberta. Canadian Journal of Earth Sciences, 40:557571.CrossRefGoogle Scholar
Brinkman, D. B. 2005. Turtles: Diversity, paleoecology, and distribution, p. 202220. InCurrie, P. J. and Koppelhus, E. B.(eds.), Dinosaur Provincial Park. Indiana University Press, Bloomington.Google Scholar
Brinkman, D., Aquillon-Martinez, M. C., de, C. A.Dávila, Leon, Jamnickzy, H., Eberth, D. A., and Colbert, M. 2009. Euclastes coahuilaensis sp. nov., a basal cheloniid turtle from the late Campanian Cerro del Pueblo Formation of Coahuila State, Mexico. PaleoBios, 28:7688.Google Scholar
Brinkman, D., Hart, M., Jamniczky, H., and Colbert, M. 2006. Nichollsemys baieri gen. et sp. nov, a primitive chelonioid turtle from the late Campanian of North America. Paludicola, 5:111124.Google Scholar
Brinkman, D. B., Li, J., and Ye, X. 2008. Order Testudines, p. 35103. InLi, J., Wu, X., and Zhang, F.(eds.), The Chinese Fossil Reptiles and Their Kin. Science Press, Beijing.Google Scholar
Brinkman, D. and de la Rosa, R. Rodriguez. 2006. Nonmarine turtles from the Cerro del Pueblo Formation (Campanian), Coahuila State, Mexico. New Mexico Museum of Natural History and Science Bulletin, 35:229233.Google Scholar
Brinkman, D. B., Stadtman, K., and Smith, D. 2000. New material of Dinochelys whitei Gaffney, 1979, from the Dry Mesa Quarry (Morrison Formation, Jurassic) of Colorado. Journal of Vertebrate Paleontology, 20:269274.CrossRefGoogle Scholar
Brochu, C.A. 2004. Calibration age and quartet divergence date estimation. Evolution, 58:13751382.CrossRefGoogle ScholarPubMed
Broin, F. de. 1980. Les tortues de Gadoufaoua (Aptien du Niger); Aperçu sur la paléobiogéographie des Pelomedusidae (Pleurodira). Mémoires de la Société Géologique de France, 139:3946.Google Scholar
Broin, F. de. 1987. Lower vertebrates from the early-middle Eocene Kuldana Formation of Kohat (Pakistan): Chelonia. Contributions from the Museum of Paleontology, University of Michigan, 27:169185.Google Scholar
Cadena Rueda, E. A. and Gaffney, E. S. 2005. Notoemys zapatocaensis, a new side-necked turtle (Pleurodira : Platychelyidae) from the early Cretaceous of Colombia. American Museum Novitates, 3470:119.2.0.CO;2>CrossRefGoogle Scholar
Cadena, E., Jaramillo, C., and Paramo, M. E. 2008. New material of Chelus colombiana (Testudines: Pleurodira) from the lower Miocene of Colombia. Journal of Vertebrate Paleontology, 28:12061212.CrossRefGoogle Scholar
Cadena, E. W., Jaramillo, C. A., and Bloch, J. I. 2013. New material of the platychelyid turtle Notoemys zapatocaensis from the Early Cretaceous of Colombia; implications for understanding Pleurodira evolution, p. 105120. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Carrano, M. T. and Velez-Juarbe, J. 2006. Paleoecology of the Quarry 9 vertebrate assemblage from Como Bluff, Wyoming (Morrison Formation, Late Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 237:147159.CrossRefGoogle Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. Freeman, New York, 698 p.Google Scholar
Ceballos, C. P., Adams, D. C., Iverson, J. B., and Valenzuela, N. 2012. Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch's rule. Evolutionary Biology, online only as of March 2013.Google Scholar
Chiari, Y., Cahais, V., Galter, N., and Delsuc, F. 2012. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology 10:65.CrossRefGoogle Scholar
Chkhikvadze, V. M. 1971. First find of the tertiar tortoise of the family Platysternidae. Paleontologichesky Zhurnal, 4:137139.Google Scholar
Chkhikvadze, V. M. 1983. Fossil Turtles of the Caucasus and Northern Regions of the Black Sea. Metsniereba, Tbilisi, 151p. (In Russian)Google Scholar
Chkhikvadze, V. M. 1987. Sur la classification et les caractères de certaines tortues fossiles d'Asie, rares et peu étudiées. Studia Palaeocheloniologica, 2:5586.Google Scholar
Chkhikvadze, V. M. 1990. Paleogene turtles of the USSR. Metsniereba, Tbilisi, 95p. (In Russian)Google Scholar
Clark, J. 1937. The stratigraphy and paleontology of the Chadron formation in the Big Badlands of South Dakota. Annals of the Carnegie Museum, 25:261350.Google Scholar
Clarke, J., Donoghue, P. C. J., and Warnock, R. C. M. 2011. Establishing a timescale for plant evolution. New Phytologist, 192:266301.CrossRefGoogle Scholar
Claude, J. and Tong, H. 2012. A reinterpretation of the pre-Eocene Testudinoids, p. 14. InSymposium on Turtle Evolution 2012, Program and Abstracts. University of Tübingen, Tübingen.Google Scholar
Claude, J., Suteethorn, V., and Tong, H. 2007. Turtles from the late Eocene–early Oligocene of the Krabi Basin (Thailand). Bulletin de la Société Géologique de France, 178:305316.CrossRefGoogle Scholar
Cope, E. D. 1871. A description of the genus Protostega, a form of extinct Testudinata. Proceedings of the American Philosophical Society, 12:422433.Google Scholar
Cope, E. D. 1873. [Description of Toxochelys latiremis]. Proceedings of the Academy of Natural Sciences of Philadelphia, 1873:10.Google Scholar
Croft, D. A. 2007. The middle Miocene (Laventan) Quebrada Honda Fauna, southern Bolivia and a description of its notoungulates. Palaeontology, 50:277303.CrossRefGoogle Scholar
Danilov, I. G. 1999. A new lindholmemydid genus (Testudines: Lindholmemydidae) from the mid-Cretaceous of Uzbekistan. Russian Journal of Herpetology, 6:6371.Google Scholar
Danilov, I. G. and Parham, J. F. 2005. A reassessment of the referral of an isolated skull from the Late Cretaceous of Uzbekistan to the stem-testudinoid turtle genus Lindholmemys. Journal of Vertebrate Paleontology, 25:784791.CrossRefGoogle Scholar
Danilov, I. G. and Parham, J. F. 2006. A redescription of ‘Plesiochelys' tatsuensis, a turtle from the Late Jurassic of China, and its bearing on the antiquity of the crown clade Cryptodira. Journal of Vertebrate Paleontology, 26:573580.CrossRefGoogle Scholar
Danilov, I. G. and Parham, J. F. 2008. A reassessment of some poorly known turtles from the Middle Jurassic of China with comments on the antiquity of extant turtles. Journal of Vertebrate Paleontology, 28:306318.CrossRefGoogle Scholar
Danilov, I. G. and Vitek, N. S. 2013. Cretaceous trionychids of Asia: An expanded review of their record and biogeography, p. 419438. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Donoghue, P. C. J. and Benton, M. J. 2007. Rocks and clocks: Calibrating the Tree of Life using fossils and molecules. Trends in Ecology and Evolution, 22:424431.CrossRefGoogle ScholarPubMed
Dornburg, A., Beaulieu, J. M., Oliver, J. N., and Near, T. J. 2011. Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Systematik Biology, 60:519527.CrossRefGoogle ScholarPubMed
dos Reis, M., Inoue, J., Hasegawa, M., Asher, R. J., Donoghue, P. C. J., and Yang, Z. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B: Biological Sciences, 279:34913500.CrossRefGoogle ScholarPubMed
Drake, R. E., van Couvering, J. A., Pickford, M. H., Curtis, G. H., and Harris, J. A. 1988. New chronology for the Early Miocene mammalian faunas of Kisingiri, Western Kenya. Journal of the Geological Society, 145:479491.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut A, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4:e88.CrossRefGoogle Scholar
Drummond, A. J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7:214.CrossRefGoogle ScholarPubMed
Dryden, L. S. 1988. Paraphyly of the Cryptodira and phylogenetic systematics of turtles. Unpublished Master's Thesis, University of Kansas, 142p.Google Scholar
Eaton, J. G., Cifelli, R. L., Hutchison, J. H., Kirkland, J. I., and Parrish, J. M. 1999. Cretaceous vertebrate faunas from the Kaiparowits Plateau, south-central Utah, p. 345353. InGillette, D. D.(ed.), Vertebrate paleontology in Utah. Utah Geological Survey, Salt Lake City.Google Scholar
Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32:17921797.CrossRefGoogle ScholarPubMed
Engstrom, T. N., Shaffer, H. B., and McCord, W. P. 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines, Trionychidae). Systematic Biology, 53:693710.CrossRefGoogle Scholar
Erickson, B. R. 1973. A new chelydrid turtle Protochelydra zangerli from the late Paleocene of North Dakota. Scientific Publications of the Science Museum of Minnesota, 2:116.Google Scholar
Fara, E., Saraiva, A. A. F., Campos, D. D. A., Moreira, J. K. R., Siebra, D. D. C., and Kellner, A. W. A. 2005. Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): Stratigraphic, palaeo-environmental and palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 218:145158.CrossRefGoogle Scholar
Feldman, C. R. and Parham, J. F. 2002. Molecular phylogenetics of emydine turtles: Taxonomic revision and the evolution of shell kinesis. Molecular Phylogenetics and Evolution, 22:388398.CrossRefGoogle ScholarPubMed
Feldmann, R. M, Schweitzer, C. E., Redman, C. M., Morris, N. J., and Ward, D. J. 2007. New Late Cretaceous lobsters from the Kyzylkum desert of Uzbekistan. Journal of Paleontology, 81:701713.CrossRefGoogle Scholar
Fraas, E. 1913. Proterochersis, eine pleurodire Schildkroete aus dem Keuper. Jahreshefte der Gesellschaft für Naturkunde in Württemberg, 69:1390.Google Scholar
de la Fuente, M. S. and Bona, P. 2002. Una nueva especie del género Hydromedusa Wagler (Pleurodira Chelidae) del Paléogeno de Patagonia. Ameghiniana, 39:7783.Google Scholar
de la Fuente, M. S. and Iturralde-Vinent, M. 2001. A new pleurodiran turtle from the Jagua Formation (Oxfordian) of Western Cuba. Journal of Paleontology, 75:860869.CrossRefGoogle Scholar
de la Fuente, M. S.,de Lapparent de Broin, F., and Manera de Bianco, T. 2001. The oldest and first nearly complete skeleton of a chelid, of the Hydromedusa sub-group (Chelidae, Pleurodira), from the Upper Cretaceous of Patagonia. Bulletin de la Société Géologique de France, 172:237244.CrossRefGoogle Scholar
de la Fuente, M. S., Umazano, A. M., Sterli, J., and Carballido, J. L. 2011. New chelid turtles of the lower section of the Cerro Barcino formation (Aptian-Albian?), Patagonia, Argentina. Cretaceous Research, 32:527537CrossRefGoogle Scholar
Fujita, M. 2003. Geological age and correlation of the vertebrate-bearing horizons in the Tetori Group. Memoir of the Fukui Prefectural Dinosaur Museum, 2:314.Google Scholar
Fujita, M. K., Engstrom, T. N., Starkey, D. E., and Shaffer, H. B. 2004. Turtle phylogeny: Insights from a novel nuclear intron. Molecular Phylogenetics and Evolution, 31:10311040.CrossRefGoogle ScholarPubMed
Gaffney, E. S. 1972. The systematics of the North American family Baenidae (Reptilia, Cryptodira). Bulletin of the American Museum of Natural History, 147:243319.Google Scholar
Gaffney, E. S. 1975. A phylogeny and classification of the higher categories of turtles. Bulletin of the American Museum of Natural History, 155:389436.Google Scholar
Gaffney, E. S. 1977. The side-necked turtle family Chelidae: A theory of relationships using shared derived characters. American Museum Novitates, 2620:128.Google Scholar
Gaffney, E. S. 1979. The Jurassic turtles of North America. Bulletin of the American Museum of Natural History, 162:91135.Google Scholar
Gaffney, E. S. 1981. A review of the fossil turtles of Australia. American Museum Novitates, 2720:138.Google Scholar
Gaffney, E. S. 1996. The postcranial morphology of Meiolania platyceps and a review of the Meiolaniidae. Bulletin of the American Museum of Natural History, 229:1166.Google Scholar
Gaffney, E. S., de Almeida Campos, D., and Hirayama, R. 2001. Cearachelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Early Cretaceous of Brazil. American Museum Novitates, 3319:120.2.0.CO;2>CrossRefGoogle Scholar
Gaffney, E. S., Archer, M., and White, A. 1989. Chelid turtles from the Miocene freshwater limestones of Riversleigh Station, Northwestern Queensland, Australia. American Museum Novitates, 2959:110.Google Scholar
Gaffney, E. S. and Jenkins, F. A. Jr. 2010. The cranial morphology of Kayentachelys, an Early Jurassic cryptodire, and the early history of turtles. Acta Zoologica, 91:335368.Google Scholar
Gaffney, E. S., Hutchison, J. H., Jenkins, F. A. Jr., and Meeker, L. J. 1987. Modern turtle origins: The oldest known cryptodire. Science, 237:289291.CrossRefGoogle ScholarPubMed
Gaffney, E. S. and Meylan, P. A. 1988. A phylogeny of turtles, p. 157219. InBenton, M. J.(ed.), The Phylogeny and Classification of the Tetrapods, Volume 1, Amphibians, Reptiles, Birds. Clarendon Press, Oxford.Google Scholar
Gaffney, E. S., Meylan, P. A., Wood, R. C., Simons, E., and de Almeida Campos, D. 2011. Evolution of the side-necked turtles: The family Podocnemididae. Bulletin of the American Museum of Natural History, 350:1237.CrossRefGoogle Scholar
Gaffney, E. S., Rich, T. H., Vickers-Rich, P., Constantine, A., Vacca, P., and Kool, L. 2007. Chubutemys, a new eucryptodiran turtle from the Early Cretaceous of Argentina, and the relationships of the Meiolaniidae. American Museum Novitates, 3599:135.CrossRefGoogle Scholar
Gaffney, E. S., Tong, H., and Meylan, P. A. 2006. Evolution of the side-necked turtles: The families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300:1318.CrossRefGoogle Scholar
Gardner, J. D., Russell, A. R., and Brinkman, D. B. 1995. Systematics and taxonomy of soft-shelled turtles (family Trionychidae) from the Judith River Group (mid Campanian) of North America. Canadian Journal of Earth Sciences, 32:631643.CrossRefGoogle Scholar
Georges, A., Birrell, J., Saint, K. M., McCord, W., and Donnellan, S. C. 1998. A phylogeny for side-necked turtles (Chelonia: Pleurodira) based on mitochondrial and nuclear gene sequence variation. Biological Journal of the Linnean Society, 67:213246.CrossRefGoogle Scholar
Gilmore, C. W. 1919. Reptilian faunas of the Torrejon, Puerco, and underlying Upper Cretaceous Formations of San Juan County, New Mexico. U.S. Geological Survey, Professional Paper 119, p. 168.Google Scholar
Gilmore, C. W. 1933. A new species of extinct turtle from the upper Pliocene of Idaho. Proceedings of the United States National Museum, 82:17.CrossRefGoogle Scholar
Gradstein, F., Ogg, J., and Smith, A. 2004. A Geologic Time Scale. Cambridge University Press, Cambridge, 610p.Google Scholar
Gray, J. E. 1869. Notes on the families and genera of tortoises (Testudinata), and on the characters afforded by the study of their skulls. Proceedings of the Zoological Society of London, 1869:165223.Google Scholar
Gray, J. E. 1870. Supplement to the catalogue of shield reptiles in the collection of the British Museum, Part 1, Testudinata (Tortoises). Taylor and Francis, London, 120p.Google Scholar
Hart, W. K. and Brueseke, M. E. 1999. Analysis and dating of volcanic horizons from Hagerman Fossil Beds National Monument and a revised interpretation of eastern Glens Ferry Formation chronostratigraphy. National Park Service Report 1443-PX9608-97-003, p. 137.Google Scholar
Hay, O. P. 1904. On some fossil turtles belonging to the Marsh collection in Yale University Museum. American Journal of Sciences, 4:261276.Google Scholar
Hay, O. P. 1908. The fossil turtles of North America. Carnegie Institution of Washington Publication, 75:1568.Google Scholar
Head, J., Hutchison, J. H., and Evans, D. C. 2009. The phylogenetic interrelationships and antiquity of plastomenid turtles, p. 71. InGaffney Turtle Symposium, Abstract Volume. Royal Tyrrell Museum of Palaeontology, Drumheller.Google Scholar
Heath, T. A. 2012. A hierarchical Bayesian model for calibrating estimates of species divergence times. Systematic Biology, 61:793809CrossRefGoogle ScholarPubMed
Hedges, S. B. and Kumar, S. 2004. Precision of molecular time estimates. Trends in Genetics, 20:242247.CrossRefGoogle ScholarPubMed
Heled, J. and Drummond, A. J. 2012. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Systematic Biology, 61:138149.CrossRefGoogle ScholarPubMed
Hervet, S. 2004. Systematique du groupe “Palaeochelys sensu lato - Mauremys” (Chelonii, Testudinoidea) du Tertiaire d'Europe occidentale: Principaux resultats. Annales de Paléontologie, 90:1378.CrossRefGoogle Scholar
Hirayama, R. 1985. Cladistic analysis of batagurine turtles. Studia Palaeocheloniologica, 1:140157.Google Scholar
Hirayama, R. 1994. Phylogenetic systematics of chelonioid sea turtles. Island Arc, 3:270284.CrossRefGoogle Scholar
Hirayama, R. 1997. Distribution and diversity of Cretaceous chelonioids, p. 225241. InCallaway, J. M. and Nicholls, E. L.(eds.), Ancient Marine Reptiles. Academic Press, London.CrossRefGoogle Scholar
Hirayama, R. 1998. Oldest known sea turtle. Nature, 392:705708.CrossRefGoogle Scholar
Hirayama, R. 2002. A preliminary report of the fossil turtles from the Kitadani formation (Early Cretaceous) of the Tetori Group of Katsuyama, Fukui Prefecture, Central Japan. Memoir of the Fukui Prefectural Dinosaur Museum, 1:2940.Google Scholar
Hirayama, R. 2007. Cranial morphology of Mesodermochelys (Chelonioidea; Testudines) from the Late Cretaceous of Japan. Journal of Vertebrate Paleontology, Supplement, 27:89A.Google Scholar
Hirayama, R., Brinkman, D. B., and Danilov, I. G. 2000. Distribution and biogeography of non-marine Cretaceous turtles. Russian Journal of Herpetology, 7:181198.Google Scholar
Hirayama, R. and Chitoku, T. 1996. Family Dermochelyidae (Superfamily Chelonioidea) from the Upper Cretaceous of North Japan. Transactions and Proceedings of the Palaeontological Society of Japan, 184:597622.Google Scholar
Hirayama, R. and Hikida, Y. 1998. Mesodermochelys (Testudines, Chelonioidea, Dermochelyidae) from the Late Cretaceous of Nakagawa-cho, Hokkaido, North Japan. Bulletin of Nakagawa Museum of Natural History, 1:6976.Google Scholar
Hirayama, R., Isaji, S., and Hibino, T. 2013. Kappachelys okurai gen. et sp. nov., a new stem soft-shelled turtle from the Early Cretaceous of Japan, p. 179185. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Ho, S. Y. W. and Phillips, M. J. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58:367380.CrossRefGoogle ScholarPubMed
Holman, J. A. 1977. Comments on turtles of the genus Chrysemys Gray. Herpetologica, 33:274276.Google Scholar
Holroyd, P. A. and Hutchison, J. H. 2002. Patterns of geographic variation in latest Cretaceous vertebrates: Evidence from the turtle component. Geological Society of America Special Paper 361, p. 177190.Google Scholar
Holroyd, P. A., Hutchison, J. H., Strait, S. G. 2001. Changes in turtle diversity and abundance through the earliest Eocene Willwood Formation: Preliminary results. University of Michigan Papers on Paleontology, 33:97108.Google Scholar
Holroyd, P. A. and Parham, J. F. 2003. The antiquity of African tortoises. Journal of Vertebrate Paleontology, 23:688690.CrossRefGoogle Scholar
Holroyd, P. A., Parham, J. F., and Hutchison, J. H. 2005. A reappraisal of some Paleogene turtles from the southeastern United State. Journal of Vertebrate Paleontology, 25:979982.CrossRefGoogle Scholar
Hugall, A. F., Foster, R., and Lee, M. S. Y. 2007. Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology, 56:543563.CrossRefGoogle Scholar
Hutchison, J. H. 1991. Early Kinosterninae (Reptilia: Testudines) and their phylogenetic significance. Journal of Vertebrate Paleontology, 11:145167.CrossRefGoogle Scholar
Hutchison, J. H. 1996. Testudines, p. 337353. InProthero, D. R. and Emry, R. J.(eds.), The Terrestrial Eocene-Oligocene Transition in North America. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hutchison, J. H. 1998. Turtles across the Paleocene/Eocene epoch boundary in west-central North America, p. 401408. InAubry, M.-R., Lucas, S. G., and Berggren, W. A.(eds.), Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Princeton University Press, Princeton.Google Scholar
Hutchison, J. H. 2013. New turtles from the Paleogene of North America, p. 477497. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Hutchison, J. H. and Archibald, J. D. 1986. Diversity of turtles across the Cretaceous/Tertiary boundary in northeastern Montana. Palaeogeography, Palaeoclimatology, Palaeoecology, 55:122.CrossRefGoogle Scholar
Hutchison, J. H. and Bramble, D. M. 1981. Homology of the plastral scales of the Kinosternidae and related turtles. Herpetologica, 37:7385.Google Scholar
Hutchison, J. H., Eaton, J. G., Holroyd, P. A., and Goodwin, M. B. 1998. Larger vertebrates of the Kaiparowits Formation (Campanian) in the Grand Staircase-Escalante National Monument and adjacent areas, p. 391398. InHill, L. M. and Koselak, J. J.(eds.), Learning from the Land. Grand Staircase-Escalante National Monument Science Symposium Proceedings. U.S. Department of the Interior, Bureau of Land Management, Washington D.C.Google Scholar
Hutchison, J. H. and Holroyd, P. A. 2003. Late Cretaceous and early Paleocene turtles of the Denver Basin, Colorado. Rocky Mountain Geology, 38:121142.CrossRefGoogle Scholar
Hutchison, J. H. and Weems, R. E. 1998. Paleocene turtle remains from South Carolina. Transactions of the American Philosophical Society, 88:165195.CrossRefGoogle Scholar
Hutchison, J. H., Knell, M. J., and Brinkman, D. B.In Press. Turtles from the Late Cretaceous (Campanian) Kaiparowits Formation, Utah. InTitus, A. L. and Loewen, M. A.(eds.), At the Top of the Grand Staircase, The Late Cretaceous of Southern Utah. Indiana University Press, Bloomington.Google Scholar
Inoue, J., Donoghue, P. C. J., and Yang, Z. 2010. The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Systematic Biology, 59:7489.CrossRefGoogle ScholarPubMed
Jackson, D. R. 1988. A re-examination of fossil turtles of the genus Trachemys (Testudines: Emydidae). Herpetologica, 44:317325.Google Scholar
Jaffe, A. L., Slater, G. J., and Alfaro, M. E. 2011. The evolution of island gigantism and body size variation in tortoises and turtles. Biology Letters,7:558561.CrossRefGoogle ScholarPubMed
Joyce, W. G. 2000. The first complete skeleton of Solnhofia parsonsi (Cryptodira, Eurysternidae) from the Upper Jurassic of Germany and its taxonomic implications. Journal of Paleontology, 74:684700.CrossRefGoogle Scholar
Joyce, W. G. 2003. A new Late Jurassic turtle specimen and the taxonomy of Palaeomedusa testa and Eurysternum wagleri. PaleoBios, 23:18.Google Scholar
Joyce, W. G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48:3102.CrossRefGoogle Scholar
Joyce, W. G. and Bell, C. J. 2004. A review of the comparative morphology of extant testudinoid turtles (Reptilia: Testudines). Asiatic Herpetological Ressearch, 10:53109.Google Scholar
Joyce, W. G., Klein, N., and Mörs, T. 2004. Carettochelyine turtle from the Neogene of Europe. Copeia, 2004:405410.CrossRefGoogle Scholar
Joyce, W. G. and Lyson, T. R. 2010 a. A neglected lineage of North American turtles fills a major gap in the fossil record. Palaeontology, 53:241248.CrossRefGoogle Scholar
Joyce, W. G. and Lyson, T. R. 2010 b. Pangshura tatrotia, a new species of pond turtle (Testudinoidea) from the Pliocene Siwaliks of Pakistan. Journal of Systematic Palaeontology, 8:449458.CrossRefGoogle Scholar
Joyce, W. G. and Lyson, T. R. 2011. New material of Gilmoremys lancensis nov. comb. (Testudines: Trionychidae) from the Hell Creek Formation and the diagnosis of plastomenid turtles. Journal of Paleontology, 85:442459.CrossRefGoogle Scholar
Joyce, W. G., Parham, J. F., and Gauthier, J. A. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology, 78:9891013.2.0.CO;2>CrossRefGoogle Scholar
Joyce, W. G., Revan, A., Lyson, T. R., and Danilov, I. G. 2009. Two new plastomenine softshell turtles from the Paleocene of Montana. Bulleting of the Peabody Museum of Natural History, 50:307325.CrossRefGoogle Scholar
Joyce, W. G. and Sterli, J. 2012. Congruence and the phylogeny of basal turtles. Acta Zoologica, 93:149159.CrossRefGoogle Scholar
Karl, H.-V. 1999. Die Zoogeographie der känozoischen Weichschildkröte Trionyx triunguis Forskal, 1775. Joanneum-Geologie und Paläontologie, 1:2760.Google Scholar
Kear, B. K. and Lee, M. S. Y. 2006. A primitive protostegid from Australia and early sea turtle evolution. Biology Letters, 2:116119.CrossRefGoogle ScholarPubMed
Kishino, H., Thorne, J. L., and Bruno, W. J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution, 18:352361.CrossRefGoogle Scholar
Knauss, G., Joyce, W. G., Lyson, T. R., and Pearson, D. 2011. A new kinosternoid from the Late Cretaceous Hell Creek Formation of North Dakota and Montana and the origin of the Dermatemys mawii lineage. Paläontologische Zeitschrift, 85:125142.CrossRefGoogle Scholar
Krenz, J. G., Naylor, G. J. P., Shaffer, H. B., and Janzen, F. J. 2005. Molecular phylogenetics and evolution of turtles. Molecular Phylogenetics and Evolution, 37:178191.CrossRefGoogle ScholarPubMed
Kuhn, O. 1964. Fossilium Catalogus, Vol. 1, Animalia, Part 107, Testudines. Ysel Press, Gravenhage, 299p.Google Scholar
Lapparent de Broin, F. de. 2000a. African chelonians from the Jurassic to the present: Phases of development and preliminary catalogue of the fossil record. Palaeontologia Africana, 36:4382.Google Scholar
Lapparent de Broin, F. de. 2000b. The oldest pre-podocnemidid turtle (Chelonii, Pleurodira), from the early Cretaceous, Ceará state, Brasil, and its environment. Treballs del Museu Geologia de Barcelona, 9:4395.Google Scholar
Lapparent de Broin, F. de. 2001. The European turtle fauna from the Triassic to the Present. Dumerilia, 4:155217.Google Scholar
Lapparent de Broin, F. and de la Fuente, M. S. 2001. Oldest world Chelidae (Chelonii, Pleurodira), from the Cretaceous of Patagonia, Argentina. Earth and Planetary Sciences, 333:463470.Google Scholar
Lapparent de Broin, F., de la Fuente, M. S., and Fernandes, M. S. 2007. Notoemys laticentralis (Chelonii, Pleurodira), Late Jurassic of Argentina: New examination of the anatomical structures and comparisons. Revue de Paléobiologie, 26:99136.Google Scholar
Lapparent de Broin, F. and Molnar, R. 2001. Eocene chelid turtles from Redbank Plains, Southeast Queensland, Australia. Geodiversitas, 23:4179.Google Scholar
Lehman, T. M. and Tomlinson, S. L. 2004. Terlinguachelys fischbecki, a new genus and species of sea turtle (Chelonioidea: Protostegidae) from the Upper Cretaceous of Texas. Journal of Paleontology, 78:11631178.CrossRefGoogle Scholar
Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T., Zhao, L.-J. 2008. An ancestral turtle from the Late Triassic of southwestern China. Nature, 456:497501.CrossRefGoogle ScholarPubMed
Linnaeus, C. 1758. Systema Naturae, Volume 1 (tenth edition). Laurentius Salvius, Holmia, 824p.Google Scholar
Linnaeus, C. 1766. Systema Naturae, Volume 1 (twelfth edition). Laurentius Salvius, Holmia, 532p.Google Scholar
Lipka, T. R., Therrien, F., Weishampel, D. B., Jamniczky, H. A., Joyce, W. G., Colbert, M. W., and Brinkman, D. B. 2006. A new turtle from the Arundel Clay facies (Potomac Formation, Early Cretaceous) of Maryland, U.S.A. Journal of Vertebrate Paleontology, 26:300307.CrossRefGoogle Scholar
Loomis, F. B. 1904. Two new river reptiles from the Titanotherium beds. American Journal of Science, 4:427432.CrossRefGoogle Scholar
Lourenço, J. M., Claude, J., Galtier, N., and Chiari, Y. 2012. Dating cryptodiran nodes: Origin and diversification of the turtle superfamily Testudinoidea. Molecular Phylogenetics and Evolution, 62:496507.CrossRefGoogle ScholarPubMed
Lydekker, R. 1889. Catalogue of the Fossil Reptilia and Amphibia in the British Museum (Natural History), Pt. 3, Chelonia. Longmans, London, 239p.Google Scholar
Lyson, T. R., Bever, G. S., Bhullar, B.-A. S., Joyce, W. G., and Gauthier, J. A. 2010. Transitional fossils and the origin of turtles. Biology Letters, 6:830833.CrossRefGoogle ScholarPubMed
Madden, R. H., Guerrero, J., Kay, R. F., Flynn, J. J., Swisher, C. C. III, and Walton, A. H. 1997. The Laventan Stage and Age, p. 355381. InKay, R. F., Madden, R. H., Cifelli, R. L., and Flynn, J. J.(eds.), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C.Google Scholar
Maisey, J. G. 1990. Stratigraphy and depositional environment of the Crato member (Santana Formation), Lower Cretaceous of N.E. Brazil. Bulletin of the American Museum of Natural History, 195:1519.Google Scholar
Marshall, C. R. 2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. American Naturalist, 171:726742.CrossRefGoogle ScholarPubMed
Martill, D. M. 2007. The age of the Cretaceous Santana Formation fossil Konservat Lagerstätte of north-east Brazil: A historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota. Cretaceous Research, 28:895920.CrossRefGoogle Scholar
Meylan, P. A. 1987. The phylogenetic relationships of soft-shelled turtles (Family Trionychidae). Bulletin of the American Museum of Natural History, 186:1101.Google Scholar
Meylan, P. A. and Gaffney, E. S. 1989. The skeletal morphology of the Cretaceous cryptodiran turtle, Adocus, and the relationships of the Trionychoidea. American Museum Novitates, 2941:160.Google Scholar
Meylan, P. A. and Gaffney, E. S. 1992. Sinaspideretes is not the oldest trionychid turtle. Journal of Vertebrate Paleontology, 12:257259.CrossRefGoogle Scholar
Meylan, P. A., Moody, T. J., Walker, C. A., and Chapman, S. D. 2000. Sandownia harrisi, a highly derived trionychoid turtle (Testudines: Cryptodira) from the Early Cretaceous of the Isle of Wight. Journal of Vertebrate Paleontology, 20:522532.CrossRefGoogle Scholar
Meylan, P. A., Weig, B. S., and Wood, R. C. 1990. Fossil soft-shelled turtles (family Trionychidae) of the Lake Turkana Basin, Africa. Copeia, 1990:508528.CrossRefGoogle Scholar
Mlynarski, M. 1976. Handbuch der Paläoherpetologie. Part 7, Testudines. Gustav Fischer Verlag, Stuttgart, 130p.Google Scholar
Müller, J. and Reisz, R. R. 2005. Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays, 27:10691075.CrossRefGoogle ScholarPubMed
Nakajima, Y., Danilov, I. G., and Hirayama, R. 2009. Plywood-like structures in costal bones of mid- to late Cretaceous trionychids from Asia, p. 128. InGaffney Turtle Symposium, Abstract Volume. Royal Tyrrell Museum of Palaeontology, Drumheller.Google Scholar
Near, T. J., Meylan, P. A., and Shaffer, H. B. 2005. Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. American Naturalist, 165:137146.CrossRefGoogle ScholarPubMed
Nessov, L. A. and Krasovskaya, T. B. 1984. Changes in the composition of turtles assemblages of Late Cretaceous of Middle Asia. Vestnik Leningradskogo Gosudarstvennogo Universiteta, 3:1525. (In Russian)Google Scholar
Nicholls, E. L. 1988. New material of Toxochelys latiremis Cope, and a revision of the genus Toxochelys (Testudines, Chelonioidea). Journal of Vertebrate Paleontology, 8:181187.CrossRefGoogle Scholar
Nielsen, E. 1959. Eocene turtles from Denmark. Meddelelser fra Dansk Geologisk Forening, 14:96114.Google Scholar
Ogg, J. G., Ogg, G., and Gradstein, F. M. 2008. The Concise Geologic Time scale. Cambridge University Press, Cambridge, 177p.Google Scholar
Oliveira, G. R. de and Kellner, A. W. A. 2007. A new side-necked turtle (Pleurodira, Pelomedusoides) from the Santana Formation (Early Cretaceous), Araripe Basin, Northeastern Brazil. Zootaxa, 1425:5361.CrossRefGoogle Scholar
Ostrom, J. H. 1970. Stratigraphy and paleontology of the Cloverly Formation (Lower Cretaceous) of the Bighorn Basin Area, Wyoming and Montana. Bulleting of the Peabody Museum of Natural History, 35:1234.Google Scholar
Owen, R. and Bell, T. 1849. Monograph on the fossil Reptilia of the London Clay, and of the Bracklesham and other Tertiary beds. Part I. Chelonia. Palaeontographical Society Monographs, 2:176.Google Scholar
Owen, R. 1861. Palaeontology or a Systematic Summary of Extinct Animals and their Geological Relations, second edition. Edinburgh, 463p.Google Scholar
Parham, J. F., Donoghue, P. C. J., Bell, C. J., et al. (22 co-authors). 2012. Best practices for using paleontological data for molecular divergence dating analyses. Systematic Biology, 61:346359.CrossRefGoogle Scholar
Parham, J. F., Feldman, C. R., and Boore, J. L. 2006. The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): Description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evolutionary Biology 6 (11):111.CrossRefGoogle ScholarPubMed
Parham, J. F. and Hutchison, J. H. 2003. A new eucryptodiran turtle from the Late Cretaceous of North America (Dinosaur Provincial Park, Alberta, Canada). Journal of Vertebrate Paleontology, 23:783798.CrossRefGoogle Scholar
Parham, J. F. and Irmis, R. B. 2008. Caveats on the use of fossil calibrations for molecular dating. American Naturalist, 171:132136.CrossRefGoogle ScholarPubMed
Parham, J. F. and Pyenson, N. D. 2010. New sea turtle from the Miocene of Peru and the iterative evolution of feeding ecomorphologies since the Cretaceous. Journal of Paleontology, 84:231247.CrossRefGoogle Scholar
Peppe, D. J, McNulty, K. P., Cote, S. M., Harcourt-Smith, W. E. H., Dunsworth, H. M., and van Couvering, J. A. 2009. Stratigraphic interpretation of the Kulu Formation (early Miocene, Rusinga Island, Kenya) and its implication for primate evolution: Journal of Human Evolution, 56:447461.CrossRefGoogle Scholar
Prothero, D. R. and Emry, R. J. 2004. The Chadronian, Orellan, and Whitneyan North American land mammal ages, p. 156168. InWoodburne, M. O.(ed.), Late Cretaceous and Cenozoic Mammals of North America. Columbia University Press, New York.Google Scholar
Pyron, R. A. 2010. A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Systematic Biology, 59:185194.CrossRefGoogle ScholarPubMed
Quintart, A. and Plisnier-Ladame, F. 1968. Eosphargis gigas (Owen, 1861). A propos d'une tortue geánte récemment exposée dans las salles de l'Institut Royal des Sciences Naturelles de Belgique. Les Naturalistes Belges, 49:406413.Google Scholar
Rabi, M., Joyce, W. G., and Wings, O. 2010. A review of the Mesozoic turtles of the Junggar Basin (Xinjiang, Northwest China) and the paleobiogeography of Jurassic to Early Cretaceous Asian testudinates. Palaeobiodiversity and Palaeoenvironments, 90:259273.CrossRefGoogle Scholar
Rannala, B. and Yang, Z. 2007. Inferring speciation times under an episodic molecular clock. Systematic Biology, 56:453466.CrossRefGoogle ScholarPubMed
Reisz, R. R. and Müller, J. 2004. The fossil record and molecular timescales: A paleontological perspective. Trends in Genetics, 20:237241.CrossRefGoogle ScholarPubMed
Rhodin, A. G. J., van Dijk, P. P., and Parham, J. F. 2008. Turtles of the world: Annotated checklist of taxonomy and synonymy. Chelonian Research Monographs, 5:000.1000.38.CrossRefGoogle Scholar
Riabinin, A. N. 1935. Remains of turtle from the late Cretaceous deposits of Kizylkum Desert. Trudy Paleozoologiceskogo Instituta, 4:6977. (In Russian)Google Scholar
Robinson, P., Gunnell, G. F., Walsh, S. L., Clyde, W. C., Storer, J. E., Stucky, R. K., Froehlich, D. J., Ferrusquia-Villaranca, I., and McKenna, M. C. 2004. Wasatchian through Duchesnean biochronology, p. 106155. InWoodburne, M. O.(ed.), Late Cretaceous and Cenozoic Mammals of North America. Columbia University Press, New York.Google Scholar
Romano, P. S., Oliveira, G. R., Azevedo, S. A. K., Kellner, A. W. A., and de Almeida Campos, D. 2013. New information about Pelomedusoides (Testudines: Pleurodira) from the Cretaceous of Brazil, p. 261275. InBrinkman, D. B., Holroyd, P. A., and Gardner, J. D.(eds.), Morphology and Evolution of Turtles. Springer.Google Scholar
Romer, A. 1956. Osteology of Reptiles. University of Chicago Press, Chicago, 772p.Google Scholar
Rougier, G. W., de la Fuente, M. S., and Arcucci, A. B. 1995. Late Triassic turtles from South America. Science, 268:855858.CrossRefGoogle ScholarPubMed
Ruez, D. R. 2009. Framework for stratigraphic analysis of Pliocene fossiliferous deposits at Hagerman Fossil Beds National Monument, Idaho. Rocky Mountain Geology, 44:3370.CrossRefGoogle Scholar
Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution, 14:12181231.CrossRefGoogle Scholar
Scheyer, T. M. and Anquetin, J. 2008. Bone histology of the Middle Jurassic turtle shell remains from Kirtlington, Oxfordshire, England. Lethaia, 41:8596.CrossRefGoogle Scholar
Scheyer, T. M., Sander, P. M., Joyce, W. G., Böhme, W., and Witzel, U. 2007. A plywood structure in the shell of fossil and living soft-shelled turtle (Trionychidae) and its evolutionary implications. Organisms Diversity and Evolution, 7:136144.CrossRefGoogle Scholar
Seeley, H. G. 1892. On a new reptile from Welte Vreden (Beaufort West), Eunotosaurus africanus (Seeley). Quarterly Journal of the Geological Society, 48:583585.CrossRefGoogle Scholar
Shaffer, H. B., Meylan, P., and McKnight, M. L. 1997. Tests of turtle phylogeny: Molecular, morphological, and paleontological approaches. Systematic Biology, 46:235268.CrossRefGoogle ScholarPubMed
Shen, X.-X., Liang, D., Wen, J.-Z., and Zhang, P. 2011. Multiple genome alignments facilitate development of NPCL markers: A case study of tetrapod phylogeny focusing on the position of turtles. Molecular Biology and Evolution, 28:32373252.CrossRefGoogle ScholarPubMed
Smith, A. B., Pisani, D., Mackenzie-Dodds, J. A., Stockley, B., Webster, B. L., and Littlewood, D. T. J. 2006. Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 23:18321851.CrossRefGoogle Scholar
Smith, E. T. 2010. Early Cretaceous chelids from Lightning Ridge, New South Wales. Alcheringa, 34:375384.CrossRefGoogle Scholar
Smith, M. E., Singer, B., Carroll, A. R. 2003. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geological Society of America Bulletin, 115:549565.2.0.CO;2>CrossRefGoogle Scholar
Spinks, P. Q. and Shaffer, H. B. 2009. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct Emys (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization. Systematic Biology, 58:120.CrossRefGoogle ScholarPubMed
Spinks, P. Q., Shaffer, H. B., McCord, W. P., and Iverson, J. B. 2004. Phylogenetic hypotheses for the turtle family Geoemydidae. Molecular Phylogenetics and Evolution, 32:164182.CrossRefGoogle ScholarPubMed
Sterli, J. 2008. A new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution. Biology Letters, 4:286289.CrossRefGoogle ScholarPubMed
Sterli, J. 2010. Phylogenetic relationships among extinct and extant turtles: The position of Pleurodira and the effects of the fossils on rooting crown-group turtles. Contributions to Zoology, 79:93106.Google Scholar
Sterli, J. and de la Fuente, M. S. 2011. A new turtle from the La Colonia Formation (Campanian–Maastrichtian), Patagonia, Argentina, with remarks on the evolution of the vertebral column in turtles. Palaeontology, 54:6378.CrossRefGoogle Scholar
Sterli, J., Pol, D., and Laurin, M. 2012. Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification. Cladistics, 2012:114.Google Scholar
Sukhanov, V. B. 2000. Mesozoic turtles of middle and central Asia, p. 309367. InBenton, M. J., Shishkin, M. A., Unwin, D. M., and Kurochkin, E. N.(eds.), The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge.Google Scholar
Sukhanov, V. B. 2006. An archaic turtle, Heckerochelys romani gen. et sp. nov., from the Middle Jurassic of Moscow Region, Russia. Fossil Turtle Research, 1:112118.Google Scholar
Sukhanov, V. B., Danilov, I. G., and Syromyatnikova, E. V. 2008. The description and phylogenetic position of a new nanhsiungchelyid turtle from the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica, 53:601614.CrossRefGoogle Scholar
Swofford, D. L. 2002. PAUP∗. Phylogenetic Analysis Using Parsimony (∗and other methods). Version 4b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Syromyatnikova, E. V. and Danilov, I. G. 2009. New material and a revision of turtles of the genus Adocus (Adocidae) from the Late Cretaceous of Middle Asia and Kazakhstan. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 313:7494.Google Scholar
Taquet, P. 1976. Géologie et paléontologie du gisement de Gadoufoua (Aptien du Niger). Cahiers de Paléontologie. Centre National de la Recherche Scientifique (CNRS), Paris, 191p.Google Scholar
Thomas, H., Roger, J., Halawani, M., Memesh, A., Lebret, P., Bourdillon, C., Buffetaut, E., Cappetta, H., Cavelier, C., Dutheil, D., Tong, H., and Vaslet, D. 1999. Late Paleocene to early Eocene marine vertebrates from the uppermost Aruma Formation (northern Saudi Arabia): Implications for the K–T transition. Comptes Rendus l‘Académie des Sciences, Series IIA, 329:905919.Google Scholar
Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Ressearch, 22:46734680.CrossRefGoogle ScholarPubMed
Thorne, J. L. and Kishino, H. 2005. Estimation of divergence times from molecular sequence data, p. 233256. InNielsen, R.(ed.), Statistical methods in molecular evolution. Springer-Verlag, New York.CrossRefGoogle Scholar
Tong, H. and Hirayama, R. 2004. First Cretaceous dermochelyid turtle from Africa. Revue de Paléobiologie, 9:5559.Google Scholar
Tong, H. and Ouyang, H. 2012. A review of Sinaspideretes wimani Young and Chow, 1953, p. 44. InSymposium on Turtle Evolution 2012, Program and Abstracts. University of Tübingen, Tübingen.Google Scholar
Tong, H., Buffetaut, E., Thomas, H., Roger, J., Halawani, M., Memesh, A., and Lebret, P. 1999. A new dermochelyid turtle from the late Paleocene-early Eocene of Saudi Arabia. C Comptes Rendus l‘Académie des Sciences, Series IIA, 329:913919.Google Scholar
Tong, H., Claude, J., Suteethorn, V., Naksri, W., and Buffetaut, E. 2009 a. Turtle assemblages of the Khorat Group (Late Jurassic–Early Cretaceous) of NE Thailand and their palaeobiogeographical significance. Geological Society of London Special Publications, 315:141152.CrossRefGoogle Scholar
Tong, H., Claude, J., Naksri, W., Suteethorn, V., Buffetaut, E., Khansubha, S., Wongko, K., and Yuangdetkla, P. 2009 b. Basilochelys macrobios n. gen. and n. sp., a large cryptodiran turtle from the Phu Kradung Formation (latest Jurassic–earliest Cretaceous) of the Khorat Plateau, NE Thailand. Geological Society of London Special Publications, 315:153173.CrossRefGoogle Scholar
Vaillant, L. 1894. Essai sur la classification générale des chéloniens. Annales des Sciences Naturelles, 16:331345.Google Scholar
Valenzuela, N. and Adams, D. C. 2011. Chromosome number and sex determination coevolve in turtles. Evolution, 65:18081813.CrossRefGoogle ScholarPubMed
Vargas-Ramíreza, M., Castaño-Morab, O. V., and Fritz, U. 2008. Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae). Organisms Diversity and Evolution, 8:388398.CrossRefGoogle Scholar
Vitek, N. S. 2011. Insights into the taxonomy and systematics of North American Eocene soft-shelled turtles from a well-preserved specimen. Bulletin of the Peabody Museum of Natural History, 52:189208.CrossRefGoogle Scholar
Vitek, N. S. 2012. Giant fossil soft-shelled turtles of North America. Palaeontologia Electronica, 15 (13A):143.Google Scholar
Warnock, R. C. M., Yang, Z., and Donoghue, P. C. J. 2012. Exploring uncertainty in the calibration of the molecular clock. Biology Letters, 8:156159.CrossRefGoogle ScholarPubMed
Weaver, W. G. Jr, and Rose, F. L. 1967. Systematics, evolution, and fossil record of the genus Chrysemys. Tulane Studies in Zoology, 14:6373.Google Scholar
Whetstone, K. N. 1978. A new genus of cryptodiran turtles (Testudinoidea, Chelydridae) from the Upper Cretaceous Hell Creek Formation on Montana. University of Kansas Science Bulletin, 51:539563.CrossRefGoogle Scholar
Wieland, G. R. 1896. Archelon ischyros: A new gigantic cryptodire testudinate from the Fort Pierre Cretaceous of South Dakota. American Journal of Science, 2:399412.CrossRefGoogle Scholar
Williams, E. E. 1950. Variation and selection in the cervical articulation of living turtles. Bulletin of the American Museum of Natural History, 94:509561.Google Scholar
Williams, E. 1954. A new Miocene species of Pelusios and the evolution of that genus. Breviora, 25:17.Google Scholar
Wing, S. L., Bown, T. M., and Obradovich, J. D. 1991. Early Eocene biotic and climatic change in interior western North America. Geology, 19:11891192.2.3.CO;2>CrossRefGoogle Scholar
Wong, R. A., Fong, J. J., and Papenfuss, T. J. 2010. Phylogeography of the African helmeted terrapin, Pelomedusa subrufa: Genetic structure, dispersal, and human introduction. Proceedings of the California Academy of Sciences, 61:575585.Google Scholar
Wood, R. C. 1973. A possible correlation between the ecology of living African pelomedusid turtles and their relative abundance in the fossil record. Copeia, 1973:627629.CrossRefGoogle Scholar
Wood, R. C. 1976. Two new species of Chelus (Testudines: Pleurodira) from the late Tertiary of northern South America. Breviora, 435:126.Google Scholar
Wood, R. C., Johnson-Gove, J., Gaffney, E. S., and Maley, K. F. 1996. Evolution and phylogeny of leatherback turtles (Dermochelyidae), with descriptions of new fossil taxa. Chelonian Conservation and Biology, 2:266286.Google Scholar
Yang, Z. 2006. Computational molecular evolution. Oxford University Press, Oxford, 376p.CrossRefGoogle Scholar
Yang, Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24:15861591.CrossRefGoogle ScholarPubMed
Yang, Z. and Rannala, B. 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution, 23:212226.CrossRefGoogle Scholar
Yeh, H.-K. 1963. Fossil turtles of China. Paleontologia Sinica, 150:1112.Google Scholar
Yeh, H.-K. 1965. New materials of fossil turtles of Inner Mongolia. Vertebrata PalAsiatica, 9:4770.Google Scholar
Yeh, H.-K. 1981. New fossil Cuora (Emydidae) from the early Pliocene of Yunnan. Vertebrata PalAsiatica, 19:239245.Google Scholar
Young, C. C. and Chow, M. C. 1953. New fossil reptiles from Szechuan, China. Acta Scientia Sinica, 2:216229.Google Scholar
Zangerl, R. 1960. The vertebrate fauna of the Selma formation of Alabama. Part V. An advanced cheloniid sea turtle. Fieldiana, Geology Memoirs, 3:279312.Google Scholar
Zug, G. 1969. Fossil chelonians, Chrysemys and Clemmys, from the upper Pliocene of Idaho. Great Basin Naturalist, 24:8287.CrossRefGoogle Scholar