Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-17T21:03:32.991Z Has data issue: false hasContentIssue false

Sub-meter-level navigation with an enhanced multi-GNSS single-point positioning algorithm using iGMAS ultra-rapid products

Published online by Cambridge University Press:  03 February 2023

Sinan Birinci
Affiliation:
Department of Geomatics Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
Mehmet Halis Saka*
Affiliation:
Department of Geomatics Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
*
*Corresponding author. E-mail: saka@gtu.edu.tr

Abstract

Ultra-rapid products have the advantage of being used in real-time positioning with no external connections. In this study, these products provided by the international GNSS Monitoring and Assessment System (iGMAS) for four global constellations (GPS, GLONASS, Galileo and BDS-3) were assessed in terms of service rate and accuracy in navigation. In this regard, a MATLAB-based in-house code solving the problem was developed for all possible combinations of the constellations. To explore the effectiveness of the iGMAS products, the same dataset has been also processed using GFZ rapid products. The results demonstrate that the GPS and Galileo solutions were substantially comparable to the rapid products concerning service rate and accuracy, but that the GLONASS and BDS-3 iGMAS products require some enhancements. In addition, the Galileo solution produced remarkably good results both individually and in combination. The GPS/GLONASS/Galileo/BDS-3 SPP solution generated a mean root mean square (RMS) error of 0 ⋅ 54 m horizontally and 0 ⋅ 89 m vertically. Thus, GPS-only, GLONASS-only, Galileo-only and BDS-3-only solutions were improved by 42%, 79%, 28% and 74% in 3D mean RMS error with the quad system solutions, respectively.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angrisano, A., Gaglione, S., Crocetto, N. and Vultaggio, M. (2020). PANG-NAV: A tool for processing GNSS measurements in SPP, including RAIM functionality. GPS Solutions, 24(1), 19.CrossRefGoogle Scholar
Bahadur, B. (2022). A study on the real-time code-based GNSS positioning with Android smartphones. Measurement, 194, 111078.CrossRefGoogle Scholar
Bahadur, B. and Nohutcu, M. (2021). Real-time single-frequency multi-GNSS positioning with ultra-rapid products. Measurement Science and Technology, 32(1), 014003.CrossRefGoogle Scholar
Beutler, G., Rothacher, M., Schaer, S., Springer, T. A., Kouba, J. and Neilan, R. E. (1999). The international GPS service (IGS): An interdisciplinary service in support of earth sciences. Advances in Space Research, 23(4), 631653.CrossRefGoogle Scholar
Beutler, G., Moore, A. W. and Mueller, I. I. (2009). The international global navigation satellite systems service (IGS): Development and achievements. Journal of Geodesy, 83(3–4), 297307.CrossRefGoogle Scholar
Bury, G., Sośnica, K., Zajdel, R. and Strugarek, D. (2022). GLONASS precise orbit determination with identification of malfunctioning spacecraft. GPS Solutions, 26(2), 36.CrossRefGoogle Scholar
Cai, C. and Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223236.CrossRefGoogle Scholar
Cao, X., Kuang, K., Ge, Y., Shen, F., Zhang, S. and Li, J. (2022). An efficient method for undifferenced BDS-2/BDS-3 high-rate clock estimation. GPS Solutions, 26(3), 66.CrossRefGoogle Scholar
Cerretto, G., Tavella, P., Lahaye, F., Mireault, Y. and Rovera, D. (2012). Near real-time comparison and monitoring of time scales with precise point positioning using nrcan ultra-rapid products. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 59(3), 545551.CrossRefGoogle ScholarPubMed
Chen, M., Yuan, H., Ma, J., Li, Z., Guang, W., Zhang, J. and Zhang, H. (2022). Performance evaluation of near real-time GNSS PPP time transfer with IGS products. International Journal of Electrical and Computer Engineering Research, 2(3), 17.CrossRefGoogle Scholar
Chiang, L. H., Pell, R. J. and Seasholtz, M. B. (2003). Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control, 13(5), 437449.CrossRefGoogle Scholar
CSNO-TARC. (2022). Test and assessment research center of China satellite navigation office. Available at: http://www.csno-tarc.cn/en/system/constellation [accessed 4 February 2022].Google Scholar
Dow, J. M., Neilan, R. E. and Rizos, C. (2009). The international GNSS service in a changing landscape of global navigation satellite systems. Journal of Geodesy, 83(3–4), 191198.CrossRefGoogle Scholar
El-Mowafy, A., Deo, M. and Kubo, N. (2017). Maintaining real-time precise point positioning during outages of orbit and clock corrections. GPS Solutions, 21(3), 937947.CrossRefGoogle Scholar
Elsobeiey, M. and Al-Harbi, S. (2016). Performance of real-time precise point positioning using IGS real-time service. GPS Solutions, 20(3), 565571.CrossRefGoogle Scholar
EUSPA. (2022). European GNSS service centre. Available at: https://www.gsc-europa.eu/system-service-status/constellation-information [accessed 5 February 2022].Google Scholar
Ge, Y., Chen, S., Wu, T., Fan, C., Qin, W., Zhou, F. and Yang, X. (2021). An analysis of BDS-3 real-time PPP: Time transfer, positioning, and tropospheric delay retrieval. Measurement, 172(November 2020), 108871.CrossRefGoogle Scholar
Geng, T., Cheng, L., Xie, X., Liu, J., Li, Z. and Jiang, R. (2022). GNSS real-time precise point positioning with BDS-3 global short message communication devices. Advances in Space Research, 70(3), 576586.CrossRefGoogle Scholar
Guo, F. and Zhang, X. (2014). Adaptive robust Kalman filtering for precise point positioning. Measurement Science and Technology, 25(10), 105011.CrossRefGoogle Scholar
Hadaś, T. and Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19, 93105.CrossRefGoogle Scholar
Hadaś, T., Kaplon, J., Bosy, J., Sierny, J. and Wilgan, K. (2013). Near-real-time regional troposphere models for the GNSS precise point positioning technique. Measurement Science and Technology, 24(5), 055003.CrossRefGoogle Scholar
Hekimoglu, S., Erdogan, B., Soycan, M. and Durdag, U. M. (2014). Univariate approach for detecting outliers in geodetic networks. Journal of Surveying Engineering, 140(2), 04014006.CrossRefGoogle Scholar
iGMAS. (2022). International GNSS monitoring & assessment system. Available at: http://www.igmas.org/ [accessed 5 February 2022].Google Scholar
Jiang, W., Liu, M., Cai, B., Rizos, C. and Wang, J. (2022). An accurate train positioning method using tightly-coupled GPS + BDS PPP/IMU strategy. GPS Solutions, 26(3), 67.CrossRefGoogle Scholar
Jiao, G. and Song, S. (2022). High-rate one-hourly updated ultra-rapid multi-GNSS satellite clock offsets estimation and its application in real-time precise point positioning. Remote Sensing, 14(5), 1257.CrossRefGoogle Scholar
Jiao, G., Song, S., Ge, Y., Su, K. and Liu, Y. (2019). Assessment of BeiDou-3 and multi-GNSS precise point positioning performance. Sensors, 19(11), 2496.CrossRefGoogle ScholarPubMed
Kiliszek, D. and Kroszczyński, K. (2020). Performance of the precise point positioning method along with the development of GPS, GLONASS and Galileo systems. Measurement, 164, 108009.CrossRefGoogle Scholar
Koch, K. R. (1999). Parameter Estimation and Hypothesis Testing in Linear Models. Berlin Heidelberg New York: Springer.CrossRefGoogle Scholar
Kouba, J. and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 1228.CrossRefGoogle Scholar
Leandro, R. F., Langley, R. B. and Santos, M. C. (2008). UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solutions, 12(1), 6570.CrossRefGoogle Scholar
Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J. and Schuh, H. (2015). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, 5(1), 8328.10.1038/srep08328CrossRefGoogle ScholarPubMed
Liu, X., Jiang, W., Chen, H., Zhao, W., Huo, L., Huang, L. and Chen, Q. (2019). An analysis of inter-system biases in BDS/GPS precise point positioning. GPS Solutions, 23(4), 116.CrossRefGoogle Scholar
Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H. and Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solutions, 20(4), 849862.CrossRefGoogle Scholar
Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R., Mervart, L. and Hugentobler, U. (2014). IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS, 9(1), 4249.Google Scholar
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K. and Schaer, S. (2017). The multi-GNSS experiment (MGEX) of the international GNSS service (IGS) – achievements, prospects and challenges. Advances in Space Research, 59(7), 16711697.CrossRefGoogle Scholar
Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(B2), 32273246.CrossRefGoogle Scholar
Ogutcu, S. and Farhan, H. T. (2022). Assessment of the GNSS PPP performance using ultra-rapid and rapid products from different analysis centres. Survey Review, 54(382), 3447.CrossRefGoogle Scholar
Pan, L., Cai, C., Santerre, R. and Zhang, X. (2017). Performance evaluation of single-frequency point positioning with GPS, GLONASS. BeiDou and Galileo. Survey Review, 49(354), 197205.CrossRefGoogle Scholar
Pearson, R. K. (2001). Exploring process data. Journal of Process Control, 11(2), 179194.CrossRefGoogle Scholar
Petit, G. and Luzum, B. (2010). IERS Conventions 2010, IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp., ISBN 3-89888-989-6.Google Scholar
Revnivykh, S., Bolkunov, A., Serdyukov, A. and Montenbruck, O. (2017). GLONASS. In Teunissen, P. J. G. & Montenbruck, O. (eds.), Springer Handbook of Global Navigation Satellite Systems. Cham, Switzerland: Springer International Publishing, 219245.CrossRefGoogle Scholar
Rousseeuw, P. J. and Leroy, A. M. (1987) Robust regression and outlier detection. In Journal of the Royal Statistical Society. Series A (Statistics in Society), Vol. 152(1). New York, NY, USA: John Wiley & Sons, Inc.Google Scholar
Satirapod, C., Anonglekha, S., Choi, Y.-S. and Lee, H.-K. (2011). Performance assessment of GPS-sensed precipitable water vapor using IGS ultra-rapid orbits: A preliminary study in Thailand. Engineering Journal, 15(1), 18.CrossRefGoogle Scholar
Shen, P., Cheng, F., Lu, X., Xiao, X. and Ge, Y. (2021). An investigation of precise orbit and clock products for BDS-3 from different analysis centers. Sensors, 21(5), 1596.CrossRefGoogle ScholarPubMed
Shi, J., Xu, C., Li, Y. and Gao, Y. (2015). Impacts of real-time satellite clock errors on GPS precise point positioning-based troposphere zenith delay estimation. Journal of Geodesy, 89(8), 747756.CrossRefGoogle Scholar
Shu, Y., Fang, R., Liu, Y., Ding, D., Qiao, L., Li, G. and Liu, J. (2020). Precise coseismic displacements from the GPS variometric approach using different precise products: Application to the 2008 MW 7.9 Wenchuan earthquake. Advances in Space Research, 65(10), 23602371.CrossRefGoogle Scholar
Wang, L., Li, Z., Ge, M., Neitzel, F., Wang, Z. and Yuan, H. (2018). Validation and assessment of multi-GNSS real-time precise point positioning in simulated kinematic mode using IGS real-time service. Remote Sensing, 10(2), 337.CrossRefGoogle Scholar
Wanninger, L. (2012). Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy, 86(2), 139148.CrossRefGoogle Scholar
Yang, Y., Song, L. and Xu, T. (2002). Robust estimator for correlated observations based on bifactor equivalent weights. Journal of Geodesy, 76(6–7), 353358.CrossRefGoogle Scholar
Yang, Y., Gao, W., Guo, S., Mao, Y. and Yang, Y. (2019). Introduction to BeiDou-3 navigation satellite system. Navigation, 66(1), 718.CrossRefGoogle Scholar
Yigit, C. O., El-Mowafy, A., Bezcioglu, M. and ve Dindar, A. A. (2020). Investigating the effects of ultra-rapid, rapid vs. Final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements. Structural Engineering And Mechanics, 73(4), 427436.Google Scholar
Zhang, Z. and Pan, L. (2022). Current performance of open position service with almost fully deployed multi-GNSS constellations: GPS, GLONASS, Galileo, BDS-2, and BDS-3. Advances in Space Research, 69(5), 19942019.CrossRefGoogle Scholar
Zhou, F., Dong, D., Li, P., Li, X. and Schuh, H. (2019). Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solutions, 23(3), 59.CrossRefGoogle Scholar
Zhou, W., Cai, H., Chen, G., Jiao, W., He, Q. and Yang, Y. (2022). Multi-GNSS combined orbit and clock solutions at iGMAS. Sensors, 22(2), 457.CrossRefGoogle ScholarPubMed
Zhu, Y., Zhang, Q., Mao, Y., Cui, X., Cai, C. and Zhang, R. (2022). Comprehensive performance review of BDS-3 after one-year official operation. Advances in Space Research, no. xxxx, Advance Access published August 2022. doi:10.1016/j.asr.2022.08.020.CrossRefGoogle Scholar
Supplementary material: PDF

Birinci and Saka supplementary material

Birinci and Saka supplementary material

Download Birinci and Saka supplementary material(PDF)
PDF 1.4 MB