Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.41 Render date: 2022-08-15T22:46:41.690Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A Markley Variables-based Attitude Estimation Method Using Optical Flow and a Star Vector for Spinning Spacecraft

Published online by Cambridge University Press:  06 August 2018

Xiaolin Ning
Affiliation:
(School of Instrumentation Science & Opto-electronics Engineering, BeiHang University (BUAA), Beijing 100191, China) (Science and Technology on Inertial Laboratory, Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory, Beijing 100191, China)
Zonghe Ding*
Affiliation:
(School of Instrumentation Science & Opto-electronics Engineering, BeiHang University (BUAA), Beijing 100191, China)
Mingzhu Xu
Affiliation:
(School of Instrumentation Science & Opto-electronics Engineering, BeiHang University (BUAA), Beijing 100191, China)
Jiancheng Fang
Affiliation:
(School of Instrumentation Science & Opto-electronics Engineering, BeiHang University (BUAA), Beijing 100191, China) (Science and Technology on Inertial Laboratory, Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory, Beijing 100191, China)
Gang Liu
Affiliation:
(School of Instrumentation Science & Opto-electronics Engineering, BeiHang University (BUAA), Beijing 100191, China) (Science and Technology on Inertial Laboratory, Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory, Beijing 100191, China)
*

Abstract

Markley variables have advantages of slow variation, easy numerical integration and high precision in describing the attitude of spinning spacecraft. Previous attitude estimation methods based on Markley variables for spinning spacecraft usually employ a sun vector from the sun sensor, a magnetic vector from the magnetometer, or the angular rate from the gyro as the measurement. This paper proposes a Markley variables-based attitude estimation method using optical flow and a star vector from a star sensor as the measurement, where optical flow provides rate information and the star vector provides direction information. This method can estimate the direction of the spin axis and spin angular rate very well by using only one star sensor. In addition, the star sensor has higher accuracy than the traditional sun sensor and magnetometer, and the star sensor can also replace the gyro in case the gyro is out of action. The impact factors of this method are also analysed, which include spin angular rate, spin axis orientation and spacecraft moment of inertia tensor error.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, F., Kang, D. J. and Park, J. H. (2013). New measurement method of Poisson's ratio of PVA hydrogels using an optical flow analysis for a digital imaging system. Measurement Science & Technology, 24(5), 215220.CrossRefGoogle Scholar
Fasano, G., Rufino, G., Accardo, D. and Grassi, M. (2013). Satellite angular velocity estimation based on star images and optical flow techniques. Sensors, 13(10), 1277112793.CrossRefGoogle ScholarPubMed
Ha, J. C. V. D (2010). Spin-Axis Attitude Determination Using In-Flight Data. Journal of Guidance Control & Dynamics, 33(3), 768781.Google Scholar
He, W., Yan, Z., Sun, C. and Chen, Y. (2017). Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer. IEEE Transactions on Cybernetics, 47(10), 34523465.CrossRefGoogle ScholarPubMed
Kumar, P., Kumar, S. and Raman, B. (2016). A fractional order variational model for the robust estimation of optical flow from image sequences. Optik-International Journal for Light and Electron Optics, 127(20), 87108727.CrossRefGoogle Scholar
Li, Y., Yi, K. and Guan, P. (2005). The determination of attitude and control strategies for double spin geostationary satellites. Journal of Spacecraft TT& C Technology, 24(5), 1926.Google Scholar
Markley, F. L. (1993). New dynamic variables for momentum-bias spacecraft. Journal of the Astronautical Sciences, 41(4), 557567.Google Scholar
Markley, F. L. and Sedlak, J. E. (2007). Kalman Filter for Spinning Spacecraft Attitude Estimation. AIAA Guidance, Navigation, and Control Conference, 4608–4623, Hilton Head, SC, United States.Google Scholar
Markley, F. L. and Sedlak, J. E. (2008). Kalman Filter for Spinning Spacecraft Attitude Estimation. Journal of Guidance Control & Dynamics, 31(6), 17501760.CrossRefGoogle Scholar
Ning, X., Bai, X. and Jiang, L. (2013). New Method for Attitude Determination of Spin Satellite Based on Continuous Star Map Observation. Chinese Space Science & Technology, 33(6), 4957.Google Scholar
Pal, M. and Bhat, M. S. (2013). Star sensor based spacecraft angular rate estimation independent of attitude determination. IEEE International Conference on. Control Applications (CCA), 580–585, Hyderabad, India.Google Scholar
Sedlak, J. E. (2005). Spinning Spacecraft Attitude Estimation Using Markley Variables: Filter Implementation and Results. Nasa Goddard Space Flight Center Cp.Google Scholar
Shuster, M. D. (1993). A survey of attitude representations. The Journal of the Astronautical Sciences, 41(4), 439517.Google Scholar
Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience.CrossRefGoogle Scholar
Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S., Voormansik, K. and Noorma, M. (2014). High spin rate magnetic controller for nanosatellites. Acta Astronautica, 95(5), 218226.CrossRefGoogle Scholar
Soken, H. E., Sakai, S., Asamura, K., Nakamura, Y. and Takashima, T. (2016). Spin-Axis Tilt Estimation for Spinning Spacecraft. AIAA Guidance, Navigation and Control Conference, 1–15, San Diego, California, USA, doi:10.2514/6.2016-0626.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Markley Variables-based Attitude Estimation Method Using Optical Flow and a Star Vector for Spinning Spacecraft
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Markley Variables-based Attitude Estimation Method Using Optical Flow and a Star Vector for Spinning Spacecraft
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Markley Variables-based Attitude Estimation Method Using Optical Flow and a Star Vector for Spinning Spacecraft
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *