Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.245 Render date: 2022-05-23T21:52:33.110Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Green's Function for a Point Heat Source in an Anisotropic Body Containing an Elliptic Hole or a Rigid Inclusion

Published online by Cambridge University Press:  05 May 2011

Chung-Hao Wang*
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan 10672, R.O.C.
Ching-Kong Chao*
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan 10672, R.O.C.
*
*Ph.D. student
**Professor
Get access

Abstract

The thermoelastic problem associated with a point heat source embedded in an anisotropic body containing an elliptic hole or a rigid inclusion is considered in this paper. By using the formalism of Stroh [1], the approach of analytic function continuation and the technique of conformal mapping, the expression for the temperature, displacements and stress functions is expressed in explicit matrix form. The present derived solutions are also valid for some special problems such as a crack or a rigid line inclusion if one lets the minor axis of the ellipse approach to zero. The stress intensity factors induced by a point heat source are also obtained.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

lStroh, A. N., “Dislocations and Cracks in Anisotropic Elasticity,” Phil Mag., 7, pp. 625646 (1958).CrossRefGoogle Scholar
2.Florence, A. L. and Goodier, J. N., “Thermal Stress at Spherical Cavities and Circular Holes in Uniform Heat Flow,” Journal of Applied Mechanics, ASME, 26, pp. 293294 (1959).Google Scholar
3.Muskhelishvili, N. I., “Some Basic Problems of Mathematical Theory of Elasticity,” Noordhoff, Groningen, The Netherlands (1953).Google Scholar
4.Hwu, C.“Thermal Stresses in an Anisotropic Plate Disturbed by an Insulated Anisotropic Elliptic Hole or Crack,” Journal of Applied Mechanics, ASME, 57, pp. 916922(1990).CrossRefGoogle Scholar
5.Tarn, J. Q. and Wang, Y. M., “Thermal Stresses in Anisotropic Bodies with a Hole or a Rigid Inclusion,” Journal of Thermal Stresses, 16, pp. 455471 (1993).CrossRefGoogle Scholar
6.Chao, C. K. and Shen, M. H., “Thermal Stresses in a Generally Anisotropic Body with an Elliptic Inclusion Subject to Uniform Heat Flow,” Journal of Applied Mechanics, ASME, 65, pp. 5157, (1998).CrossRefGoogle Scholar
7.Ting, T. C. T., “Anisotropic Elasticity,” Oxford University Press, Inc. (1996).Google Scholar
8.Barnett, D. M. and Lothe, J., “Synthesis of the Sextic and the Integral Formalism for Dislocations, Green's Function and Surface Waves in Anisotropic Elastic Solids,” Phys. Norv., 7, pp. 1319 (1973).Google Scholar
9.Hwu, C. and Ting, T. C. T.“Two-Dimensional Problems of the Anisotropic Elastic Solid with an Elliptic Inclusion,” Q. J. Mech. Appl Math., 42, pp. 553572 (1989).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Green's Function for a Point Heat Source in an Anisotropic Body Containing an Elliptic Hole or a Rigid Inclusion
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Green's Function for a Point Heat Source in an Anisotropic Body Containing an Elliptic Hole or a Rigid Inclusion
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Green's Function for a Point Heat Source in an Anisotropic Body Containing an Elliptic Hole or a Rigid Inclusion
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *