Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:39:48.024Z Has data issue: false hasContentIssue false

YBa2Cu3O7−δ on MgO films grown by pulsed organometallic beam epitaxy and a grain boundary junction application

Published online by Cambridge University Press:  03 March 2011

K.A. Dean
Affiliation:
Department of Materials Science and Engineering, and NSF Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
D.B. Buchholz
Affiliation:
Department of Materials Science and Engineering, and NSF Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
L.D. Marks
Affiliation:
Department of Materials Science and Engineering, and NSF Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, and NSF Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
B.V. Vuchic
Affiliation:
Materials Science Division, and NSF Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
K.L. Merkle
Affiliation:
Materials Science Division, and NSF Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
D.B. Studebaker
Affiliation:
Department of Chemistry, and NSF Science, and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
T.J. Marks
Affiliation:
Department of Chemistry, and NSF Science, and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3108
Get access

Abstract

MgO films and YBa2Cu3O7−δ/MgO multilayer films were developed with the pulsed organometallic beam epitaxy (POMBE) growth technique, and grain boundary junctions were fabricated from the films to demonstrate the utility of the multilayers. High-quality MgO films were grown on LaAlO3 substrates by POMBE using a Mg(dpm)2 precursor. MgO crystallinity, as assessed by x-ray diffraction rocking curves, improved with the use of CuOx or YBa2Cu3O7−δ buffer layers. YBa2Cu3O7−δ films grown on the MgO layer by POMBE exhibited a Tc0 of 83 K and a Jc (12 K) exceeding 106 A/cm2 for applied magnetic fields up to 3 × 104 G. Grain boundary junctions were formed by growing YBa2Cu3O7−δ on MgO films that had been pretreated with a simple sputtering technique. This sputtering induces a controlled, 45°grain boundary in subsequently deposited YBa2Cu3O7−δ films. The resulting boundary showed weak-link current-voltage behavior and an IcRn product of 52 μV at 10 K, demonstrating that sputter-induced grain boundary junctions are compatible with multilayer technology.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pond, J.M., Carroll, K.R., Horwitz, J. S., Chrisey, D.B., Osofsky, M.S., and Cestone, V.C., Appl. Phys. Lett. 59, 3033 (1991).CrossRefGoogle Scholar
2Hammond, R. B. and Bourne, L. C., in Phenomenology and Applications of High Temperature Superconductors, edited by Bedell, K.S., Inui, M., Meltzer, D.E., Schrieffer, J.R., and Doniach, S. (Addison-Wesley Publishing Co., New York, 1992).Google Scholar
3Burns, M. J., Char, K., Cole, B.F., Ruby, W.S., and Sachtjen, S.A., Appl. Phys. Lett. 62, 1435 (1993).CrossRefGoogle Scholar
4Talvacchio, J. and Wagner, G. R., in Superconductivity Applications for Infrared and Microwave Devices, edited by Bhasin, K. B. and Heinen, V.O. (Proc. SPIE 1292, 1990), p. 2.CrossRefGoogle Scholar
5Prusseit, W., Utz, B., Corspius, S., Baudenbacher, F., Hirata, K., Berberich, P., Kinder, H., and Eibl, O., J. Alloys and Compounds 195, 215 (1993).CrossRefGoogle Scholar
6Berezin, A. B., Yuan, C.W., and Lozanne, A.L. de, Appl. Phys. Lett. 57, 90 (1990).CrossRefGoogle Scholar
7Char, K., Colclough, M.S., Garrison, S.M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).Google Scholar
8Vuchic, B.V., Merkle, K.L., Dean, K.A., Buchholz, D.B., Chang, R.P.H., and Marks, L. D., unpublished.Google Scholar
9Chew, N.G., Goodyear, S.W., Humphreys, R.G., Satchell, J. S., Edwards, J. A., and Keene, M.N., Appl. Phys. Lett. 60, 1516 (1992).Google Scholar
10Tanaka, S., Nakanishi, H., Matsuura, T., Higaki, K., Itozaki, H., and Yazu, S., IEEE Trans. Magn. 27, 1607 (1991).Google Scholar
11Wang, F., Muller, S., and Wordenweber, R., Thin Solid Films 232, 232 (1993).Google Scholar
12Kamata, K., Shibata, Y., and Kishi, Y., J. Mater. Sci. Lett. 3, 423 (1984).Google Scholar
13Kwak, B. S., Boyd, E. P., Zhang, K., Erbil, A., and Wilkins, B., Appl. Phys. Lett. 54, 2542 (1989).CrossRefGoogle Scholar
14Fujii, E., Tomozawa, A., Fujii, S., Torii, H., Hattori, M., and Takayama, R., Jpn. J. Appl. Phys. 32, 1448 (1993), Pt. 2.CrossRefGoogle Scholar
15Maruyama, T. and Shionoya, J., Jpn. J. Appl. Phys. 29, 810 (1990), Pt. 2.CrossRefGoogle Scholar
16Huang, R. and Kitai, A.H., J. Electron. Mater. 22, 215 (1993).Google Scholar
17Lu, Z, Feigelson, R.S., Route, R.K., DiCarolis, S.A., Hiskes, R., and Jacowitz, R. D., J. Cryst. Growth 128, 788 (1993).Google Scholar
18Musolf, J., Boeke, E., Waffenschmidt, E., He, X., Heuken, M., and Heime, K., J. Alloys and Compounds 195, 295 (1993).CrossRefGoogle Scholar
19Duray, S.J., Buchholz, D.B., Song, S.N., Richeson, D.S., Ketterson, J.B., Marks, T.J., and Chang, R.P.H., Appl. Phys. Lett. 59, 1503 (1991); Buchholz, D.B., Duray, S.J., Schulz, D.L., Marks, T.J., Ketterson, J.B., and Chang, R.P.H., Materials Chemistry and Physics 36, 377 (1994).Google Scholar
20DeGroot, D.C., Hogan, T.P., Kannewurf, C.R., Buchholz, D.B., Chang, R.P.H., Gao, F., and Nordin, R.A., Physica 222 C, 271 (1994).CrossRefGoogle Scholar
21Miller, D.J., Hettinger, J.D., Chiarello, R.P., and Kim, H.K., J. Mater. Res. 7, 2828 (1992).Google Scholar
22Uwai, K., J. Cryst. Growth 112, 298 (1991).Google Scholar
23Catana, A., Locquet, J-P., Paik, S.M., and Schuller, I.K., Phys. Rev. B 46, 15477 (1992).CrossRefGoogle Scholar
24Bean, C.P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
25Umezawa, A., Crabtree, G.W., Liu, J.Z., Weber, H.W., Kwok, W.K., Nunez, L. H., Moran, T. J., and Sowers, C. H., Phys. Rev. B 36, 7151 (1987).Google Scholar
26Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S.M., Bravman, J.C., Geballe, T.H., Laderman, S.S., Taber, R. C., and Jacowtiz, R. D., Physica C171, 354 (1990).CrossRefGoogle Scholar
27Lee, S. and Youm, D., Physica 211C, 205 (1993).Google Scholar