Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T17:01:19.828Z Has data issue: false hasContentIssue false

Trapping mode of Y2BaCuO5 and BaCeO3 inclusions within the melt-textured YBa2Cu3O7−y crystals

Published online by Cambridge University Press:  31 January 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Il-Hyun Kuk
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Get access

Extract

The particle segregation mode of two different inclusion phases of Y2BaCuO5 (Y211: a dissolving phase in a Ba–Cu–O liquid phase) and BaCeO3 (a nondissolving phase) was investigated in the melt-textured YBa2Cu3O7−y (Y123) with BaCeO3 addition (0–20 wt. %), and with 30 wt.% Y211 plus BaCeO3 (0–20 wt. %). The segregation mode of the inclusion phases is dependent not only on the type of the inclusion phases but also their amounts. When the trapped amount of the Y211 is small, they make an X-like pattern on the diagonal planes of the Y123 crystal. When the amount of the Y211 is large, meanwhile, the Y211 particles are trapped within four tetrahedral spaces (normal to the c-axis) bounded by the diagonal planes of the Y123 crystal, with no Y211 trapping within two tetrahedral spaces parallel. On the other hand, the nondissolving BaCeO3 particles make linear tracks normal to the {100} growth fronts of the Y123 crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M. E., van Dover, R. B., Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3.Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn J. Appl. Phys. 28, L1189 (1989).CrossRefGoogle Scholar
4.McGinn, P., Chen, W., Zhu, N., Tan, L., Varanasi, C., and Sen-gupta, S., Appl. Phys. Lett. 59, 120 (1991).CrossRefGoogle Scholar
5.Varanasi, C. and McGinn, P. J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
6.Kim, C-J., Lai, S.H., and McGinn, P. J., Mater. Lett. 19, 185 (1994).CrossRefGoogle Scholar
7.Kim, C-J., Kim, K-B., Hong, G-W., and Lee, H-Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
8.Varanasi, C., Black, M.A., and McGinn, P. J., J. Mater. Res. 11, 565 (1996).CrossRefGoogle Scholar
9.Uhlmann, D.R., Charlmers, B., and Jackson, K.A., J. Appl. Phys. 35, 2986 (1964).CrossRefGoogle Scholar
10.Cima, M. J., Fleming, M.C., Figueredo, A.M., Nakade, M., Ishii, H., Brody, H.D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
11.Izumi, T., Nakahara, Y., Sung, T-H., and Shiohara, Y., J. Mater. Res. 7, 801 (1992).CrossRefGoogle Scholar
12.Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Physica C 228, 351 (1994).CrossRefGoogle Scholar
13.Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Mater. Lett. 20, 283 (1994).Google Scholar
14.Kim, C-J., Kim, K-B., Won, D-Y., Moon, H-C., Suhr, D-S., Lai, S.H., and McGinn, P. J., J. Mater. Res. 9, 1952 (1994).CrossRefGoogle Scholar
15.Kim, C-J., unpublished.Google Scholar
16.Kim, C-J., Lee, H-G., Kim, K-B., and Hong, G-W., J. Mater. Res. 10, 2235 (1995).CrossRefGoogle Scholar
17.Lee, H-Y., Kim, C-J., and Hong, G-W., J. Am. Ceram. Soc. 79, 2921 (1996).Google Scholar
18.Vandewalle, N., Ausloos, M., Mineur, N, Cloots, R., Hong, G-W., and Kim, C-J., Supercond. Sci. Technol. 9, 665 (1996).CrossRefGoogle Scholar
19.Kim, C-J., Kim, K-B., Kuk, I-H., and Hong, G-W., J. Physica C 255, 95 (1995).CrossRefGoogle Scholar
20.Kim, C-J., Park, H-W., Kim, K-B., and Hong, G-W., J. Cryst. Growth 6, 398 (1995).CrossRefGoogle Scholar
21.Vandewalle, N., Cloots, R., and Ausloos, M., J. Mater. Res. 10, 268 (1995).CrossRefGoogle Scholar
22.Jee, Y.A., Chung, H., and Kang, S-J. L., unpublished.Google Scholar
23.Endo, A., Chauhan, H. S., Egi, T., and Shiohara, Y., J. Mater. Res. 11, 795 (1996).CrossRefGoogle Scholar
24.Rigby, K., Cima, M. J., Fleming, M.C., Haggerty, J. S., Honjo, S., and Sung, T.H., Extended Abstract-Int. Workshop on Superconductivity, Maui, HI (1995), p. 1605.Google Scholar
25.Stefanescu, D.M., Dhindaw, B.K., Kacar, S.A., and Morita, A., Metall. Trans. 19A, 2847 (1993).Google Scholar
26.Kim, C-J., Kim, K-B., Park, H-W., Kuk, I-H., and Hong, G-W., J. Mater. Sci. 32, 4701 (1997).CrossRefGoogle Scholar