Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T13:03:59.731Z Has data issue: false hasContentIssue false

Thermodynamic stability of tetragonal zirconia nanocrystallites

Published online by Cambridge University Press:  26 November 2012

Nae-Lih Wu*
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Ton-Fon Wu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Irene A. Rusakova
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204-5932
*
a)Address all correspondence to this author.
Get access

Abstract

The thermodynamic stability of tetragonal (t-) ZrO2 nanocrystallites below the bulk stability temperature 1200 °C was studied through specially synthesized crystallites that exhibited an extremely slow coarsening rate. The nanocrystallites were mechanically transformed to the monoclinic (m-) structure, and, because the crystallite size was kept below approximately 20 nm, the t-structure was completely recovered solely by thermal treatments between 900 and 1100 °C. These results gave strong evidence to the notion that, for sufficiently small crystallite size, nanocrystalline t-ZrO2 is not just kinetically metastable but can be truly thermodynamically more stable than the mpolymorph in air below 1200 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hino, M. and Arata, K., J. Chem. Soc., Chem. Commun. 851 (1980).Google Scholar
2.Arata, K., Adv. Catal. 37, 165 (1990).Google Scholar
3.Tanabe, K. and Yamaguchi, T., Catal. Today 20, 185 (1994).CrossRefGoogle Scholar
4.Kiukkola, K. and Wagner, C., J. Electrochem. Soc. 104, 308 (1957).CrossRefGoogle Scholar
5.Garvie, R.C., Hannick, R.H., and Pascoe, R.T., Nature 258, 703 (1975).CrossRefGoogle Scholar
6.Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceram. Mater. 1, 259 (1986).CrossRefGoogle Scholar
7.Chen, I.W. and Xue, L.A., J. Am. Ceram. Soc. 73, 2585 (1990).CrossRefGoogle Scholar
8.Hwang, S.L. and Chen, I.W., J. Am. Ceram. Soc. 73, 3269 (1990).Google Scholar
9.Scott, H.G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar
10.Clark, G.L. and Reynolds, D.H., Ind. Eng. Chem. 29, 711 (1937).CrossRefGoogle Scholar
11.Clearfield, A., Inorg. Chem. 3, 146 (1964).Google Scholar
12.Ogihara, T., Mizutani, N., and Kato, M., Ceram. Int. 13, 35 (1987).Google Scholar
13.Dayal, R., Gokhale, N.M., Sharma, S.C., Lal, R., and Krishnan, R., Br. Ceram. Trans. J. 91, 45 (1992).Google Scholar
14.Djuricic, B., Pickering, S., McGarry, D., Glaude, P., Tambuyser, P., and Schuster, K., Ceram. Int. 21, 195 (1995).CrossRefGoogle Scholar
15.Garvie, R.C., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
16.Garvie, R.C., J. Phys. Chem. 82, 218 (1978).Google Scholar
17.Denkewicz, R.P. Jr, TenHuisen, K.S., and Adair, J.H., J. Mater. Res. 5, 2698 (1990).CrossRefGoogle Scholar
18.Murase, Y. and Kato, E., J. Am. Ceram. Soc. 66, 196 (1983).Google Scholar
19.Morgan, P.E.D., J. Am. Ceram. Soc. 67, C204 (1984).Google Scholar
20.Collins, D.E. and Bowman, K.J., J. Mater. Res. 13, 1230 (1998).Google Scholar
21.Srinivasan, R., Hubbard, C.R., Calvin, O.B., and Davis, B.H., Chem. Mater. 5, 27 (1993).CrossRefGoogle Scholar
22.Tani, E., Yoshimura, M., and Komiya, S., J. Am. Ceram. Soc. 66, 11 (1983).Google Scholar
23.Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51, 349 (1968).CrossRefGoogle Scholar
24.Osendi, I., Moya, J.S., Serna, C.J., and Soria, J., J. Am. Ceram. Soc. 57, 97 (1974).Google Scholar
25.Wu, N.L., Wang, S.Y., and Rusakova, I.A., Science 285, 1375 (1999).Google Scholar
26. International Center for Diffraction Data, PDF #42–1164 and 37–1484 (Newtown Square, PA).Google Scholar
27.Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67, C119 (1984).CrossRefGoogle Scholar
28.Heuer, A.H., Rühle, M., and Marshall, D.B., J. Am. Ceram. Soc. 73, 1084 (1990).CrossRefGoogle Scholar
29.Hannink, R.H.J. and Swain, M.V., J. Am. Ceram. Soc. 72, 90 (1989).Google Scholar
30.Ge, R., Liu, Z., Chen, H., Zhang, D., and Zhao, T., Ceram. Int. 22, 123 (1996).Google Scholar
31.Reyes-Morel, P.E., Cherng, J.S., and Chen, I.W., J. Am. Ceram. Soc. 71, 648 (1988).Google Scholar