Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T02:50:07.489Z Has data issue: false hasContentIssue false

Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2

Published online by Cambridge University Press:  03 March 2011

Sergey V. Ushakov
Affiliation:
Thermochemistry Facility and NEAT ORU University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Thermochemistry Facility and NEAT ORU University of California at Davis, Davis, California 95616
J. Matt Farmer
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Lynn A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a) Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The formation enthalpies for alkali rare-earth compounds of the type K3RE(PO4)2 where RE = Sc, Y, Lu, Er, Ho, Dy, Gd, Nd, or Ce and for A3Lu(PO4)2 compounds with A = K, Rb, or Cs were determined using high-temperature oxide-melt solution calorimetry. Structural phase transitions were observed and characterized using differential scanning calorimetry and high-temperature x-ray diffraction. The formation enthalpy of the K3RE(PO4)2 phases from oxides becomes more exothermic with increasing rare-earth radius for the K3RE(PO4)2 series and with increasing alkali radius for the A3Lu(PO4)2 compounds. The K3RE(PO4)2 phases are stable with respect to anhydrous K3PO4 and REPO4. The monoclinic K3RE(PO4)2 compounds undergo a reversible phase transition to a hexagonal (glaserite-type) structure with a phase transition temperature that increases from −99 to 1197 °C with increasing RE ionic radius going from Lu to Ce.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Szczygiel, I.: The system CePO4-K3PO4. Thermochimica Acta 370, 125 (2001).CrossRefGoogle Scholar
2.Wisniewski, D., Wojtowicz, A.J., Drozdowski, W., Farmer, J.M. and Boatner, L.A.: Rb3Lu(PO4)2:Ce and Cs3Lu(PO4)2:Ce - new promising scintillator materials. Crystal Res. Tech. 38, 275 (2003).CrossRefGoogle Scholar
3.Gossner, B.: The crystal structure of glasorite and potassium sulfate. Neues Jahrb. Min. Geol. 57, 89 1928 . PDF no. 74-1772Google Scholar
4.Bredig, M.A.: New group of isomorphous compounds A2XO4. J. Am. Chem. Soc. 63, 2533 (1941).CrossRefGoogle Scholar
5.Bredig, M.A.: Isomorphism and allotropy in compounds of the type A2XO4. J. Phys. Chem. 46, 747 (1942).CrossRefGoogle Scholar
6.Moore, P.B.: Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. Am. Mineral. 58, 32 (1973).Google Scholar
7.Tomaszewski, P.E., Pietraszko, A., Maczka, M. and Hanuza, J.: CsAl(MoO4)2. Acta Crystallogr. E58 i119 (2002).Google Scholar
8.Hawthorne, F.C., Krivovichev, S.V., and Burns, P.C.: The crystal chemistry of sulfate minerals. In Reviews in Mineralogy & Geochemistry, edited by Alpers, C.N., Jambor, J.L., and D.K. Nordstrom. 40, (Sulfate Minerals, Washington, D.C.), p. 66 (2000).Google Scholar
9.Mel’nikov, P.P. and Komissarova, L.N.: Double phosphates, arsenates, and vanadates of rare earth elements, scandium, and yttrium with alkali metals. Dokl. Akad. Nauk SSSR. 256, 878 (1981).Google Scholar
10.Mel’nikov, P.P., Quiroga, H., Heredero, J.D., Efremov, V.A. and Komissarova, L.N.: Ternary cesium rubidium rare-earth phosphates. Dokl. Akad. Nauk SSSR. 285, 1134 (1985).Google Scholar
11.Efremov, V.A., Mel’nikov, P.P. and Komissarova, L.N.: New compounds of the glaserite type. Rev. Chim. Miner. 22, 666 1985 . K3Sc(PO4)2, glaserite, P3, a = 9.43, c = 7.629, PDF no. 78-0869, ICSD no. 061786Google Scholar
12.Rghioui, L., Ammari, L. El, Benarafa, L. and Wignacourt, J.W.: K2CsYb(PO4)2. Acta Crystallogr. C58 i90 (2002).Google Scholar
13.Kirichenko, A.N., Otkidach, E.N., Spiridonov, F.M., Kharsika, V.F. and Komissarova, L.N.: Double potassium yttrium phosphate vanadates. Zh. Neorg. Khim. 44, 1061 (1999).Google Scholar
14.Komissarova, L.N., Bobylev, A.P., Kirichenko, A.N., Pushkina, G.Y.A. and Spiridonov, F.M.: Phase formation in systems K3R(PO4)2-K3R(VO4)2 (R = Sc, Y, La, Eu, Gd, Yb). Zh. Neorg. Khim. 47, 684 (2002).Google Scholar
15.Farmer, J.M. Structural and crystal chemical properties of rare-earth double phosphates and rare-earth titanate pyrochlores, Ph.D. Thesis, Baylor University, 2004.Google Scholar
16. Powder Diffraction File: Inorganic Phases, Card (K3Y(PO4)2 P21/m, Lazoryak, ICDD Grant-in-Aid, 1998) JCPDS-ICDD, 1999.Google Scholar
17.Czupinska, G. and Znamierowska, T.The system yttrium phosphate (YPO4)-potassium phosphate. J. of Therm. Anal. 39, 539 (1993).Google Scholar
18.Czupinska, G.: Phase equilibria in the system YPO4-K3PO4. J. Therm. Anal. Calorim. 60, 199 (2000).CrossRefGoogle Scholar
19.Jungowska, W.: Phase equilibria in the system La2O3-K2O-P2O5. J. Therm. Anal. Calorim. 60, 193 (2000).CrossRefGoogle Scholar
20.Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Min. 2, 89 (1977).CrossRefGoogle Scholar
21.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Min. 24, 222 (1997).CrossRefGoogle Scholar
22.Cheng, J. and Navrotsky, A.: Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In). J. Mater. Res. 18, 2501 (2003).CrossRefGoogle Scholar
23.Glushko, P. and Medvedev, V.A.Termicheskie Konstanty Veshestv, (Akademia Nauk, Moscow, 1978).Google Scholar
24.Putnam, R.L., Navrotsky, A., Cordfunke, E.H.P. and Huntelaar, M.E.: Thermodynamics of formation for two cerium aluminum oxides, CeAlO3(s) and CeAl12O19.918(s), and Cerium Sesquioxide, Ce2O3(s) at T = 298.15 K. J. Chem. Thermodyn. 32, 911 (2000).CrossRefGoogle Scholar
25.Ushakov, S.V., Helean, K.B., Navrotsky, A. and Boatner, L.A.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).CrossRefGoogle Scholar
26.Chomjakov, K.G., Jaworoskaja, S.F. and Shirokovich, P.K.: Die Losungs - und Verdunnungswarmen von Kalium- und Ammoniumphosphaten. Z. Phys. Chem. A 167, 35 (1933).CrossRefGoogle Scholar
27. Powder Diffraction File: Inorganic Phases, Card no. 20-0921 (K3PO4, Norbert, Rev. Chim. Miner. 3, 1, 1966) JCPDS-ICDD, (1999).Google Scholar
28. Powder Diffraction File: Inorganic Phases, Card no. 35-0962 (Cs2CO3) and 71-1980 (Rb2CO3) (Ehrhardt, H., Schweer, H., Seidel, H., Z. Anorg. Allg. Chem. 462, 185, 1980) JCPDS-ICDD, (1999).Google Scholar
29.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
30.Risbud, A.S., Helean, K.B., Wilding, M.C., Lu, P. and Navrotsky, A.: Enthalpies of formation of lanthanide oxyapatite phases. J. Mater. Res. 16, 2780 (2001).CrossRefGoogle Scholar
31.Liang, J-J., Navrotsky, A., Ludwig, T., Seifert, H.J. and Aldinger, F.: Enthalpy of formation of rare earth silicates Y2SiO5 and Yb2SiO5 and N-containing silicate Y10(SiO4)6N2. J. Mater. Res. 14, 1181 (1999).CrossRefGoogle Scholar
32.Kanke, Y. and Navrotsky, A.: A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: Stability of the perovskites and the garnets. J. Solid State Chem. 141, 424 (1998).CrossRefGoogle Scholar
33.Zhang, Y. PhD Thesis, University of CA, Davis, 2003.Google Scholar
34.Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M. and Boatner, L.A.: Formation enthalpies of rare earth titanate pyrochlores. J. Solid State Chem. 177, 1858 (2004).CrossRefGoogle Scholar
35.Helean, K.B., Navrotsky, A. and Ewing, R.C. in preparation.Google Scholar
36.Farmer, M. private communication, 2003.Google Scholar
37.Boatner, L.A. Synthesis, structure and properties of Monazite, Pretulite, and Xenotime. In Reviews in Mineralogy & Geochemistry, edited by Kohn, M.J., Rokovan, J., and Hughes, J.M.. 48, (Phosphates: Geochemical, Geobiological, and Materials Importance, Mineralogical Society of America, Washington D.C.) pp. 1112 (2000).Google Scholar
38.Cheng, J. private communication, 2003.Google Scholar
39.Robie, R.A. and Hemingway, B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures (U.S. Geol. Surv. Bull. 2131, Washington, DC, 1995).Google Scholar
40.Majzlan, J., Navrotsky, A. and Neil, J.M.: Energetics of anhydrite, barite, celestine, and anglesite: A high-temperature and differential scanning calorimetry study. Geochim. et Cosmochim. Acta. 66, 1839 (2002).CrossRefGoogle Scholar
41.Robie, R.A., Hemingway, B.S. and Fisher, J.R.Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC, 1979).Google Scholar