Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T11:59:45.777Z Has data issue: false hasContentIssue false

Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni- and Mg–Fe-based alloys prepared by high-energy ball milling

Published online by Cambridge University Press:  31 January 2011

L. E. A. Berlouis*
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
E. Cabrera
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
E. Hall-Barientos
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
P. J. Hall
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
S. B. Dodd
Affiliation:
Structural Materials Centre, A7 Building, Defence and Evaluation Research Agency (DERA) Farnborough, Hants, GU14 0LX, United Kingdom
S. Morris
Affiliation:
Structural Materials Centre, A7 Building, Defence and Evaluation Research Agency (DERA) Farnborough, Hants, GU14 0LX, United Kingdom
M. A. Imam
Affiliation:
Naval Research Laboratory, Materials Science –5343
Get access

Abstract

The hydrogen loading characteristics of nanocrystalline Mg, Mg–Ni (Ni from 0.1 to 10 at.%), and Mg–Fe (Fe from 1 to 10 at.%) alloys in 3 MPa H2 were examined using high pressure differential scanning calorimetry and thermogravimetric analysis. All samples showed rapid uptake of hydrogen. A decrease in the onset temperature for hydrogen absorption was observed with increasing Ni and Fe alloy content, but the thermal signatures obtained suggested that only Mg was involved in the hydriding reaction; i.e., no clear evidence was found for the intermetallic hydrides Mg2NiH4 and Mg2FeH6. Hydrogen loading capacity decreased with temperature cycling, and this was attributed to a sintering process in the alloy, leading to a reduction in the specific surface available for hydrogen absorption.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zaluski, L., Hosatte, S., Tessier, P., Ryan, D.H., Ström-Olsen, J.O., Trudeau, M.L., and Schulz, R., Z. Phys. Chem. 183, 45 (1994).Google Scholar
2.Zaluski, L., Tessier, P., Ryan, D.H., Doner, C.B., Zaluska, A., Ström-Olsen, J.O., Trudeau, M.L., and Schulz, R., J. Mater. Res. 8, 3059 (1993).CrossRefGoogle Scholar
3.Zaluski, L., Zaluska, A. and Ström-Olsen, J.O., J. Alloys Comp. 253–254, 70 (1997).CrossRefGoogle Scholar
4.Zaluski, L., Zaluska, A., and Ström-Olsen, J.O., J. Alloys Comp. 217, 245 (1995).CrossRefGoogle Scholar
5.Kichheim, R., Mütschele, T., Kieninger, W., Gleiter, H., Birringer, R., and Koble, T.D., Mater. Sci. Eng. 99, 457 (1988).CrossRefGoogle Scholar
6.Stuhr, U., Wipf, H., Udovic, T.J., Weissmüller, J., and Gleiter, H., J. Phys. C 7, 219 (1995).Google Scholar
7.Buschow, K.H.J., Bouten, P.C.P., and Miedema, A.R., Rep. Prog. Phys. 45, 937 (1982).CrossRefGoogle Scholar
8.Reilly, J.J. and Wiswall, R.H., Inorg. Chem. 7, 2254 (1968).CrossRefGoogle Scholar
9.Huot, J., Hayakawa, H., and Akiba, E., J. Alloys Comp. 248, 164 (1997).Google Scholar
10.Didissheim, J.J., Zolliker, P., Yvon, K., Fisher, P., Schefer, J., Gubelimann, M., and Williams, A.F., Inorg. Chem. 23, 1953 (1984).Google Scholar
11.Hightower, A., Fultz, B., and Bowman, R.C., J. Alloys Comp. 252, 238 (1997).CrossRefGoogle Scholar
12.Huot, J., Hayakawa, H., and Akiba, E., J. Alloys Comp. 248, 164 (1997).CrossRefGoogle Scholar
13.Bogdanovic, B., Schlichte, K., and Reiser, A., in Hydrogen Power: Theoretical and Engineering Solutions edited by Saetre, T.D. (Kluwer Academic, Dordrecht, The Netherlands, 1998), p. 295.Google Scholar
14.Nayeb-Hashemi, A.A., Clark, J.B., and Swartzendruber, L.J., Bull. Alloy Phase Diagrams 6, 1076 (1985).Google Scholar
15.Krozer, A. and Kasemo, B., J. Phys. Condens. Matter 1, 1533 (1989).CrossRefGoogle Scholar
16.Stillesjö, F., Ólafsson, A., Hjörvasson, B., and Karlsson, E., Zeit. Phys. Chem. 181, 257 (1993).CrossRefGoogle Scholar
17.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., J. Alloys Comp. 288, 217 (1999).CrossRefGoogle Scholar
18.Holtz, R.L. and Imam, M.A., J. Mat. Sci 32, 2267 (1997).CrossRefGoogle Scholar
19.Morris, S., Dodd, S.B., Hall, P.J., Mackinnon, A.J., and Berlouis, L.E.A., J. Alloys Comp. 293–295 458 (1999).CrossRefGoogle Scholar
20.Ellinger, F.H., Holley, C.H., McInteer, B.B., Pavone, D., Potter, R.M., Staritzky, E., and Zchariasen, W.H., J. Am. Chem. Soc. 77, 2624 (1955).CrossRefGoogle Scholar
21.Stepanov, A., Ivanov, E., Konstanchuk, I., and Boldyrev, V., J. Less-Common Metals 131, 89 (1987).CrossRefGoogle Scholar
22.Song, M.Y., J. Mater. Sci. 30, 1343 (1995).CrossRefGoogle Scholar
23.Zhu, H.Y., Chen, C.P., Lei, Y.Q., Wu, J., and Wang, Q.D., J. Less-Common Met. 172–174, 873 (1991).CrossRefGoogle Scholar
24.Bogdanovic, B., Hofmann, H., Neuy, A., Reiser, A., Schlichte, K., Spliethoff, B., and Wessel, S., J. Alloys Comp. 292, 57 (1999).CrossRefGoogle Scholar
25.Orimo, S., Fujii, H., and Ikeda, K., Acta. Mater. 45, 331 (1997).CrossRefGoogle Scholar
26.Orimo, S. and Fujii, H., Intermetallics 6, 185 (1998).CrossRefGoogle Scholar
27.Orimo, S., Züttel, A., Ikeda, K., Saruki, S., Fukunaga, T., Fujii, H., and Schlapbach, L., J. Alloys Comp. 293–295, 437 (1999).CrossRefGoogle Scholar
28.Schefer, J., Fischer, P., Hälg, W., Stucli, F., Schlapbach, L., Didisheim, J., Yvon, K., and Anderson, A.F., J. Less-Common Metals 74, 65 (1980).Google Scholar
29.Fujii, H., Orimo, S., and Ikeda, K., J. Alloys Comp. 253–254, 80 (1997).Google Scholar
30.Imamura, H., Maruta, Y., and Tsuchiya, S., J. Less-Common Metals 135, 277 (1987).CrossRefGoogle Scholar
31.Imamura, H., Usui, Y., and Takashima, M., J. Less-Common Metals 175, 171 (1991).CrossRefGoogle Scholar
32.Vigeholm, B., Jensen, K., Larsen, B., and Pedersen, A.S., J. Less-Common Metals 91, 133 (1987).CrossRefGoogle Scholar
33.Vigeholm, B., Kjoller, J., Larsen, B., and Pedersen, A.S., J. Less-Common Metals 89, 135 (1983).CrossRefGoogle Scholar
34.Hjort, P., Krozer, A., and Kasemo, B., J. Alloys Comp. 237, 74 (1996).CrossRefGoogle Scholar
35.Zhu, H.Y., Chen, C.P., Lei, Y.Q., Wu, J., and Wang, Q.D., J. Less-Common Metals 172–174, 873 (1991).CrossRefGoogle Scholar
36.Nayeb-Hasemi, A.A. and Clark, J.B., Bull. Alloy Phase Diagrams 6, 1525 (1985).Google Scholar
37.Roberts, C.S., Magnesium and Its Alloys (John Wiley & Sons, New York, 1960).Google Scholar
38.Gavra, Z., Mintz, M.H., Kimmel, G., and Hadari, Z., Inorg. Chem. 18, 3595 (1979).CrossRefGoogle Scholar
39.Song, M.Y., Int. J. Hydrogen Energy 20, 221 (1995).CrossRefGoogle Scholar
40.Song, M.Y., Darriet, B., Pezt, M., Lee, J.Y., and Hagenmuller, P., J. Less-Common Metals 118, 235 (1986).CrossRefGoogle Scholar
41.Song, M.Y., J. Less-Common Metals 157, 155 (1990).Google Scholar
42.Song, M.Y. and Park, H.R., J. Mater. Sci. Lett. 16, 1774 (1997).Google Scholar
43.Huot, J., Akiba, E., and Takada, T., J. Alloys Comp. 231, 815 (1995).CrossRefGoogle Scholar
44.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., J. Alloys Comp. 289, 197 (1999).CrossRefGoogle Scholar
45.Zolliker, P., Yvon, K., Fisher, P., and Schefer, J., Inorg. Chem. 24, 4188 (1985).CrossRefGoogle Scholar
46.Welter, J.M. and Rudman, P.S., Scipta Metall. 285–286, 16 (1982).Google Scholar