Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-25T08:43:40.962Z Has data issue: false hasContentIssue false

Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates

Published online by Cambridge University Press:  03 March 2011

F. R. Chien
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
S. R. Nutt
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
W. S. Yoo
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
T. Kimoto
Affiliation:
Department of Electrical Engineering, Kyoto University, Kyoto 606–01, Japan
H. Matsunami
Affiliation:
Department of Electrical Engineering, Kyoto University, Kyoto 606–01, Japan
Get access

Abstract

Epitaxial β-SiC (3C) films were grown on (0001) 6H-SiC and 15R-SiC substrates by chemical vapor deposition (CVD). TEM characterization revealed that films on both substrates exhibited large areas of atomically flat, coherent interfaces. However, when 3C-SiC films were grown on 6H substrates, double position boundaries (DPB's) were frequently observed, and islands of 6H were occasionally embedded in the predominantly 3C film. In contrast, films of 3C-SiC grown on 15R substrates exhibited relatively few DPB's and only occasional islands of 15R. A model of interlay er interactions in SiC was applied to predict the atomic structures at both 3C/6H and 3C/s15R interfaces, and these predictions were consistent with experimental observations of the interfaces by TEM. The observed interface structures and defect distributions were attributed to a microscopic kinetic mechanism of terrace growth. Consideration of step energies and growth kinetics led to the prediction that DPB's can be avoided by growing 3C-SiC films on 15R-SiC substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ramsdell, L. S., Am. Mineral. 32, 64 (1947).Google Scholar
2Zhdanov, G. S., C. R. (Dokl.) Acad. Sci. USSR 48, 39 (1945).Google Scholar
3Trigunayat, G. C. and Chadha, G. K., Phys. Status Solidi 4, 9 (1971).CrossRefGoogle Scholar
4Inomata, Y., in Silicon Carbide Ceramics-l, edited by Sōmiya, S. and Inomata, Y. (Elsevier Applied Science, New York, 1991), p. 9.Google Scholar
5Powell, J. A. and Matus, L. G., in Amorphous and Crystalline Silicon Carbide, edited by Harris, G. L. and Yang, C. Y-W. (Springer Proceedings in Physics, 1989), Vol. 34, p. 2.Google Scholar
6Pirouz, P., in Polycrystalline Semiconductors, edited by Werner, J. H., Mbller, H. J., and Strunk, H. P. (Springer Proceedings in Physics, 1989), Vol. 35, p. 200.CrossRefGoogle Scholar
7Parsons, J. D., Bunshah, R. F., and Stafsudd, O. M., Solid StateTechnol. 11, 133 (1985).Google Scholar
8Chien, F. R., Nutt, S. R., Buchan, N., Carulli, J. M., Beetz, C. P., Yoo, W. S., and Cummings, D., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E. H., Grabow, M. L., and Lagally, M. G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 733.Google Scholar
9Chien, F. R., Nutt, S. R., Buchan, N., Carulli, J. M., and Yoo, W. S., in Common Themes and Mechanisms ofEpitaxial Growth, edited by Fuoss, P., Tsao, J., Kisker, D., Zangwill, A., and Kuech, T. (Mater. Res. Soc. Symp. Proc. 312, Pittsburgh, PA, 1993), p. 303.Google Scholar
10Chien, F. R., Nutt, S. R., and Cummings, D., Philos. Mag. A 68, 325 (1993).CrossRefGoogle Scholar
11Kong, H. S., Jiang, B. L., Glass, J. T., Rozgonyi, G. A., and More, K. L., J. Appl. Phys. 63, 2645 (1988).CrossRefGoogle Scholar
12Powell, J. A., Larkin, D. J., Matus, L. G., Choyke, W. J., Bradshaw, J. L., Henderson, L., Yoganathan, M., Yang, J., and Pirouz, P., Appl. Phys. Lett. 56, 1353 (1990).CrossRefGoogle Scholar
13Wang, Y. C., Kong, H. S., Glass, J. T., Davis, R. F., and More, K. L., J. Am. Ceram. Soc. 73, 1289 (1990).CrossRefGoogle Scholar
14Knippenberg, W. F., Philips Res. Rept. 18, 161 (1963).Google Scholar
15Heine, V., Cheng, C., and Needs, R. J., J. Am. Ceram. Soc. 74, 2630 (1991).CrossRefGoogle Scholar
16Verma, A. R. and Krishna, P., Polymorphism and Polytypism in Crystals (John Wiley and Sons, Inc., New York, 1966), Chap. 4.Google Scholar
17Yoo, W. S. and Matsunami, H., in Amorphous and Crystalline Silicon Carbide, edited by Yang, C. Y., Rahman, M. M., and Harris, G. L. (Springer Proceedings, 1992), Vol. 71, p. 66.CrossRefGoogle Scholar
18Nishino, S., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, 144 (1978).CrossRefGoogle Scholar
19Yoshida, S., Sakuma, E., Okumura, H., Misawa, S., and Endo, K., J. Appl. Phys. 62, 303 (1987).CrossRefGoogle Scholar
20Yoo, W. S., Nishino, S., and Matsunami, H., Memoirs of the Faculty of Engineering, Kyoto University 49, 21 (1987).Google Scholar
21Muench, W. V. and Pfaffeneder, I., Thin Solid Films 31, 39 (1976).CrossRefGoogle Scholar
22Stowell, M. J., in Epitaxial Growth–Part B, edited by Matthews, J.W. (Academic, New York, 1975), p. 465.Google Scholar
23Ogbuji, L. U., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 64, 91 (1981).CrossRefGoogle Scholar
24Cheng, C., Needs, R. J., and Heine, V., J. Phys. C 21, 1049 (1988).CrossRefGoogle Scholar
25Shaw, J. J. A. and Heine, V., J. Phys. Condens. Matter 2, 4351 (1990).CrossRefGoogle Scholar
26Matsunami, H., Shibahara, K., Kuroda, N., Yoo, W. S., and Nishino, S., in Amorphous and Crystalline Silicon Crbide, edited by Harris, G.L. and Yang, C.Y. (Springer Proceedings, 1989), Vol. 34, p. 34.Google Scholar
27Kong, H. S., Glass, J. T., and Davis, R. F., J. Appl. Phys. 64, 2672 (1988).CrossRefGoogle Scholar
28Bauser, E. and Rozgonyi, G. A., Appl. Phys. Lett. 37, 1001 (1980).CrossRefGoogle Scholar