Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T18:10:21.966Z Has data issue: false hasContentIssue false

Temperature dependence of the soft magnetic character of Fe73.5Cu1Nb3Si13.5B9 amorphous and nanocrystalline alloys

Published online by Cambridge University Press:  31 January 2011

J. Gonzáz
Affiliation:
Department of Materials Physics, Faculty of Chemistry, P.O. Box 1072, 20080 San Sebastian, Spain
Get access

Abstract

Results on microstructure and coercivity of current-annealed Fe73.5Cu1Nb3Si13.5B9 amorphous alloy treated at different current densities (12–56 A/mm2) and duration (0.5–720 min) are presented. Saturation magnetization and coercivity dependencies with the current density of the nanocrystalline samples is explained by considering the presence of two phases: nanocrystals of Fe(Si) body-centered cubic (bcc) grains and the residual amorphous matrix. An increase in the magnetic hardness observed when the sample was heated by current densities, giving rise to an increase in the sample temperature above the Curie point of the residual amorphous matrix, could be ascribed to exchange and dipolar decoupling of the Fe(Si)-bcc grains.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
2.Herzer, G., IEEE Trans. Magn. 26, 1397 (1990).CrossRefGoogle Scholar
3.Alben, R., Becker, J.J., and Chi, M.C., J. Appl. Phys. 49, 1653 (1978).CrossRefGoogle Scholar
4.Hernando, A. and Vázquez, M., in Rapidly Solidified Alloys, edited by Liebermann, H.H. (Marcel Dekker, New York, 1993), p. 553.Google Scholar
5.Herzer, G., Scripta Metall. Mater. 33, 1741 (1995).CrossRefGoogle Scholar
6.Hernando, A., Marin, P., Vázquez, M., Barandiarán, J.M., Herzer, G., Phys. Rev. B 58, 366 (1998).CrossRefGoogle Scholar
7.González, J.M., Murillo, N., González, J., Blanco, J.M., and Echeberría, J., J. Mater. Res. 11, 512 (1996).CrossRefGoogle Scholar
8.Varga, L.K., Novák, L., Mazaleyrat, F., J. Magn. Magn. Mater. 210, L25 (2000).CrossRefGoogle Scholar
9.Jagielinski, T., IEEE Trans. Magn. 19, 1925 (1983).CrossRefGoogle Scholar
10.Gonzalez, J., Vázquez, M., Barandiarán, J.M., Hernando, A., J. Phys. D: Appl. Phys. 21, 162 (1988).CrossRefGoogle Scholar
11.Kulik, T., Savage, H.T., and Hernando, A., J. Appl. Phys. 73, 6855 (1993).CrossRefGoogle Scholar
12.X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Klug, H.P. and Alexander, L.E. (Wiley, New York, 1974), Chap. 9.Google Scholar
13.González, J.M., Julián, C. de, Cebollada, F., Giri, A.K., and González, J., J. Appl. Phys. 81, 4658 (1997).CrossRefGoogle Scholar
14.Hernando, A., Vázquez, M., Kulik, T., Prados, C., Phys. Rev. B 51, 3581 (1995).CrossRefGoogle Scholar
15.Slawska-Waniewska, A., Gutowski, M., Lachowicz, H., Kulik, T., and Matyja, H., Phys. Rev. B 46, 14594 (1992).CrossRefGoogle Scholar