Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-19T16:45:45.115Z Has data issue: false hasContentIssue false

Synthesis processes and sintering behavior of layered-perovskite barium bismuth tantalate ceramics

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Buh-Kuan Fang
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Get access

Abstract

Ferroelectric layered-perovskite BaBi2Ta2O9 has been successfully prepared through a novel process using BiTaO4 as a precursor. Heating the mixtures of BiTaO4 and BaCO3 at 900 °C without soaking results in the complete formation of the monophasic powder. In contrast, the conventional solid-state reaction requires soaking at 900 °C for 2 h to obtain the pure compound. Such prolonged heat treatment causes unfavorable growth of particles. In the new process, the formation of BaBi2Ta2O9 is markedly accelerated due to the suppression of the formation of a stable intermediate Ba5Ta4O15. In addition, this process yields submicron BaBi2Ta2O9 powder with significantly improved sinterability. Sintering at 1000 °C affords well-densified ceramics. On the other hand, heating at temperatures greater than 1100 °C causes BaBi2Ta2O9 to thermally decompose and form Bi2O3 and rod-like BaTa2O6. The formation of these rod-like grains results in the expansion of the matrix, thereby reducing the density.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paz de Araujo, C. A., Cuchiaro, J. D., Scott, M. C., and McMillan, L. D., Inter. Patent Appl., WO93/12542 (1993).Google Scholar
2.Jones, R. E., Jr., Zurcher, P., Chu, P., Taylor, D. J., Lii, Y. T., Jiang, B., Maniar, P. D., and Gillespie, S. J., Micoelectr. Eng. 29, 3 (1995).CrossRefGoogle Scholar
3.Aurivillius, B., Arkiv kemi 1 (54), 463 (1949).Google Scholar
4.Aurivillius, B., Arkiv kemi 1 (58), 499 (1949).Google Scholar
5.Aurivillius, B., Arkiv kemi 2 (37), 519 (1950).Google Scholar
6.Smolenskii, G. A., Isupov, V. A., and Agranovskaya, A. I., Sov. Phys. Solid State 3, 651 (1961).Google Scholar
7.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 7581 (1995).CrossRefGoogle Scholar
8.Dat, R. D., Lee, J. K., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
9.Chu, P. Y., Jones, R. E., Jr., Zurcher, P., Taylor, D. J., Jiang, B., Gillespie, S. J., Lii, Y. T., Kottke, M., Fejes, P., and Chen, W., J. Mater. Res. 11, 1065 (1996).CrossRefGoogle Scholar
10.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
11.Jones, R. E., Maniar, P. D., Moazzami, R., Zurcher, P., Witowski, J. Z., Lii, Y. T., Chu, P. Y., and Gillespie, S. J., Thin Solid Films 270, 584 (1995).CrossRefGoogle Scholar
12.Bhattacharya, D., Singh, R. K., and Holloway, P. H., J. Appl. Phys. 70, 5433 (1991).CrossRefGoogle Scholar
13.Descamps, M., Remiens, D., Chabal, L., Jaber, B., and Thierry, B., Appl. Phys. Lett. 66, 685 (1995).CrossRefGoogle Scholar
14.Li, X. Y., Wu, N. J., Xie, K., Liu, J. S., Lin, H., Huang, T. Q., and Ignatiev, A., Phys. C 248, 281 (1995).CrossRefGoogle Scholar
15.Izumi, F., Asano, H., Murata, H., and Watanabe, N., J. Appl. Crystallogr. 20, 411 (1987).CrossRefGoogle Scholar
16.Levin, E. M. and Roth, R. S., J. Res. Natl. Bur. Standards 68A, 199 (1964).Google Scholar
17.Levin, E. M. and Roth, R. S., J. Res. Natl. Bur. Standards 68A, 202 (1964).Google Scholar
18.Barrault, J., Grosset, C., Dion, M., Ganne, M., and Tournoux, M., Catalysis Lett. 16, 203 (1992).CrossRefGoogle Scholar