Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:54:58.859Z Has data issue: false hasContentIssue false

Synthesis and thermal expansion behavior of Ba1+x Zr4P6−2xSi2xO24 and Sr1+xZr4P6−2xSi2xO24 systems

Published online by Cambridge University Press:  03 March 2011

Chi-Yuan Huang*
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
D.K. Agrawal
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
H.A. McKinstry
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Santosh Y. Limaye
Affiliation:
LoTEC, Inc., 1840 West Parkway Boulevard, West Valley City, Utah 84119
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

NaZr2P3O12 (NZP) is emerging as an important family of a large number of isostractural compounds in which several members have demonstrated very low thermal expansion characteristics. Ba1+xZr4P6−2xSi2xO24 and Sr1+xZr4P6−2xSi2xO24 crystalline solutions are two such systems belonging to the NZP family. Here, we report the bulk thermal expansion and axial thermal expansion behavior of various compositions in these systems. The low expansion behavior of these materials is attributed to their unique crystal structure, which is framework open structure, and can accommodate numerous ionic substitutions at various lattice sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Alamo, J. and Roy, R., J. Am. Ceram. Soc. 67, C78 (1984).Google Scholar
2Roy, R., Agrawal, D. K., Alamo, J., and Roy, R. A., Mater. Res. Bull. XIX, 471 (1984).CrossRefGoogle Scholar
3Agrawal, D. K. and Stubican, V. S., Mater. Res. Bull. XX, 99 (1985).Google Scholar
4Lenain, G. E., McKinstry, H. A., Limaye, S. Y., and Woodward, A., Mater. Res. Bull. XIX, 1451 (1984).CrossRefGoogle Scholar
5Limaye, S. Y., Agrawal, D. K., and McKinstry, H. A., J. Am. Ceram. Soc. 70, C232 (1987).Google Scholar
6Oota, T. and Yamai, I., J. Am. Ceram. Soc. 69, 1 (1986).CrossRefGoogle Scholar
7Oota, T. and Yamai, I., J. Ceram. Soc. Jpn. Int. Ed. 95, 485 (1987).Google Scholar
8Limaye, S. Y., Agrawal, D. K., Roy, R., and Mehrotra, Y., J. Mater. Sci. 26, 93 (1991).CrossRefGoogle Scholar
9Hagman, L. O. and Kierkegaard, P., Acta Chem. Scand. 22, 1822 (1968).CrossRefGoogle Scholar
10Hong, H. Y-P., Mater. Res. Bull. XI, 173 (1976).CrossRefGoogle Scholar
11Kohler, H. and Schulz, H., Solid State Ionics 9 & 10, 795 (1983).Google Scholar
12Hazen, R. M., Finger, L. W., Agrawal, D. K., McKinstry, H. A., and Perrotta, A. J., J. Mater. Res. 2, 329 (1987).CrossRefGoogle Scholar
13McKinstry, H.A., I. Appl. Phys. 41, 5074 (1970).CrossRefGoogle Scholar
14Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 350.Google Scholar
15Ohashi, T., and Matsuhiro, T. K., Synthesis and Low Thermal Expansion Behavior of NaZr2(PO4)3-Type Structure Zirconium Phosphates (91st Ann. Mtg. Am. Ceram. Soc, April 23–27, Indianapolis, IN, Paper No. 12-B-89, 1989).Google Scholar
16Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B25, 925 (1969).Google Scholar