Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:04:44.825Z Has data issue: false hasContentIssue false

A study of temperature and pressure induced structural and electronic changes in SbCl5 intercalated graphite: Part I. Structural aspects

Published online by Cambridge University Press:  31 January 2011

M. Lelaurain
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B. P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
J.F. Marêché
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B. P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
E. McRae
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B. P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
O.E. Andersson
Affiliation:
Department of Experimental Physics, Umeå University, S-90187 Umeå, Sweden
B. Sundqvist
Affiliation:
Department of Experimental Physics, Umeå University, S-90187 Umeå, Sweden
Get access

Abstract

We have studied the effects of temperature (10 ≤ T ≤ 295 K) and pressure (0 ≤ p ≤ 0.8 GPa) on the state of intercalate layer crystallization in SbCl5 graphite intercalation compounds of stages 2, 4, and 8. At room temperature (RT), the intercalate layer may in some second stage compounds be fully crystallized and lowering the temperature creates no further modifications. In all other cases, i.e., those in which the intercalate layer has only partial crystallization at RT, lowering T leads to the formation of new in-plane unit cells, the final state depending on the kinetics. Applying pressure to above 0.3–0.5 GPa results in crystallization in all cases, different from that induced simply by lowering of the temperature. We discuss the unit cells observed and the relationships they bear to each other in the light of other works on similar compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Intercalated Materials, edited by Lévy, F. (D. Riedel, Dordrecht, Holland, 1979).Google Scholar
2Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).Google Scholar
3Graphite Intercalation Compounds I: Structure and Dynamics, Springer Series in Materials Science, edited by Zabel, H. and Solin, S. A. (Springer-Verlag, Berlin, 1990), Vol. 14.CrossRefGoogle Scholar
4Proc. 5th Int. Symp. on Graphite Intercalation Compounds, Berlin, Germany, May 2225, 1989, published in Synth. Metals 34 (1989).Google Scholar
5Proc. 6th Int. Symp. on Intercalation Compounds, Orléans, France, May 2731, 1991, published in Mater. Sci. Forum, 91–93 (1992).Google Scholar
6Andersson, O.E., Sundqvist, B., McRae, E., Marêché, J. F., and Lelaurain, M., J. Mater. Res. 7, pg. 2989 (1992).CrossRefGoogle Scholar
7Andersson, O.E., McRae, E., Sundqvist, B., Mareche, J.F., and Lelaurain, M., in preparation.Google Scholar
8Mélin, J., Doctorat es Sciences Thesis, Nancy (1976).Google Scholar
9Mélin, J. and Hérold, A., Carbon 13, 357 (1975).Google Scholar
10Clarke, R., Elzinga, M., Gray, J. N., Homma, H., Morelli, D. T., Winokur, M. J., and Uher, C., Phys. Rev. B 26, 5250 (1982).CrossRefGoogle Scholar
11Timp, G., Dresselhaus, M.S., Salamanca-Riba, L., Erbil, A., Hobbs, L.W., Dresselhaus, G., Eklund, P. C., and lye, Y., Phys. Rev. B 26, 2323 (1982).Google Scholar
12Boca, M.H., Saylors, M.L., Smith, D.S., and Eklund, P.C., Synth. Metals 6, 39 (1983).CrossRefGoogle Scholar
13Suzuki, M., Tanuma, S., Suzuki, K., and Ishihara, M., Synth. Metals 6, 121 (1983).Google Scholar
14Houser, B., Homma, H., and Clarke, R., Phys. Rev. B 30, 4802 (1984).CrossRefGoogle Scholar
15Rayment, T., Schlögl, R., and Thomas, J.M., Phys. Rev. B 30, 1034 (1984).Google Scholar
16Homma, H. and Clarke, R., Phys. Rev. B 31, 5865 (1985).CrossRefGoogle Scholar
17Preiss, H. and Fichtner-Schmittler, H., Cryst. Res. Technol. 21, 1047 (1986).CrossRefGoogle Scholar
18Salamanca-Riba, L., Roth, G., Gibson, J.M., Kortan, A.R., Dresselhaus, G., and Birgenau, R. J., Phys. Rev. B 33, 2738 (1986).CrossRefGoogle Scholar
19Hwang, D. M., in Extended Abstracts No. 8, Graphite Intercalation Compounds, edited by Dresselhaus, M. S., Dresselhaus, G., and Solm, S.A. (Materials Research Society, Pittsburgh, PA, 1986), p. 60.Google Scholar
20Salamanca-Riba, L. and Dresselhaus, M. S., Carbon 24, 261 (1986).CrossRefGoogle Scholar
21Hernandez, P., Lamelas, F., Clarke, R., Dimon, P., Sirota, E.B., and Sinha, S. K., Phys. Rev. Lett. 59, 1220 (1987).Google Scholar
22Mittleman, R. K., Parker, N. W., and Crewe, A. V., Phys. Rev. B 36, 7590 (1987).Google Scholar
23Andersson, O.E., Lelaurain, M., Marêché, J. F., McRae, E., and Sundqvist, B., Synth. Metals 34, 187 (1989).Google Scholar
24Otobe, K., Nishitani, R., and Nishina, Y., Synth. Metals 34, 193 (1989).CrossRefGoogle Scholar
25Andersson, O.E., Lelaurain, M., Marêché, J.F., McRae, E., and Sundqvist, B., Mater. Sci. Forum 91-93, 301 (1992).Google Scholar
26Boolchand, P., Bresser, W. J., McDaniel, D., Sisson, K., Teh, V., and Eklund, P. C., Solid State Commun. 40, 1049 (1981).CrossRefGoogle Scholar
27Eklund, P. C., Giergiel, J., and Boolchand, P., in Physics of Intercalation Compounds, Springer Series in Solid State Physics, edited by Pietronero, L. and Tosatti, E. (Springer-Verlag, Berlin, 1981), Vol. 38, p. 168.Google Scholar
28Friedt, J. M., Poinsot, R., and Soderholm, L., Solid State Commun. 49, 223 (1984).Google Scholar
29Wortmann, G., Godler, F., Perscheid, B., Kaindl, G., and Schlögl, R., Synth. Metals 26, 109 (1988).Google Scholar
30Datars, W. R., Zaleski, H., and Ummat, P. K., Phys. Rev. B 38, 5737 (1988).CrossRefGoogle Scholar
31Hwang, D.M., Qian, X.W., and Solin, S.A., Phys. Rev. Lett. 53, 1473 (1984).CrossRefGoogle Scholar
32Schlögl, R., Jones, W., and Thomas, J. M., J. Chem. Soc. Chem. Comm, 1330 (1983).Google Scholar
33Alzyab, B., Perry, C. H., Zahopoulos, C., Pringle, O. A., and Nicklow, R. M., Phys. Rev. B 38, 1544 (1988).CrossRefGoogle Scholar
34Lelaurain, M., Marêché, J. F., McRae, E., Furdin, G., and Hérold, A., J. Mater. Res. 3, 87 (1988); ibid., Synth. Metals 23, 365 (1988).CrossRefGoogle Scholar
35McRae, E., Lelaurain, M., Marêché, J. F., Furdin, G., Hérold, A., and Jean, M. Saint, J. Mater. Res. 3, 97 (1988).CrossRefGoogle Scholar
36Groot, K. de, Maurer, D., Müller, V., Geiser, V., and Güntherodt, H J., Synth. Metals 34, 335 (1989).CrossRefGoogle Scholar
37Zaleski, H., Ummat, P.K., and Datars, W.R., J. Phys. C: Solid State Phys. 17, 3167 (1984).Google Scholar