Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T00:18:27.224Z Has data issue: false hasContentIssue false

Study of Te nanoprecipitates in CdZnTe crystals

Published online by Cambridge University Press:  31 January 2011

Guoqiang Li*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Shao-Ju Shih
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
Shichun Mu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Wanqi Jie
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
*
a)Address all correspondence to this author. e-mails: guoqiang.li@materials.ox.ac.uk; guoqiang.lee@gmail.com
Get access

Abstract

In-depth studies of the two types of Te nanoprecipitates, linear and elliptic, in Cd1–xZnxTe (CZT) crystals grown by a modified vertical Bridgman method have been carried out. Electron diffraction suggests that linear Te nanoprecipitates align their Te atoms in a similar way to CZT structure, while elliptic Te nanoprecipitates cluster Te atoms following the pure trigonal Te structure. The three-dimensional morphology for both linear and elliptic Te nanoprecipitates has been revealed by delicate energy-dispersive x-ray analysis under electron microscopy. The density of elliptic Te nanoprecipitates ranges from 1015 to 1017 cm−3, while linear ones usually several times lower for a certain CZT wafer. The origin of both types of Te nanoprecipitates has been discussed in terms of the local density of intrinsic point defects in CZT. CZT properties are influenced more negatively by elliptic Te nanoprecipitates, which shed light on the methodology for crystal growth: preventing the clustering of intrinsic point defects during the crystal growth will be essential to obtain high quality CZT crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pavlović, M., Jakšić, M., Zorc, H., Medunić, Z.Identification of deep trap levels from thermally stimulated current spectra of semi-insulating CdZnTe detector material. J. Appl. Phys. 104, 023525 (2008)CrossRefGoogle Scholar
2.Li, G., Zhang, X., Hua, H., Jie, W.A modified vertical Bridgman method for growth of high-quality CdZnTe crystals. J. Electron. Mater. 34, 1215 (2005)CrossRefGoogle Scholar
3.Xu, Y., Sellin, P.J., Lohstroh, A., Jie, W., Wang, T., Mills, C., Veeramani, P., Veale, M.Comparison of the x-ray spectroscopy response and charge transport properties of semi-insulating In/Al-doped CdZnTe crystals. J. Appl. Phys. 105, 083101 (2009)CrossRefGoogle Scholar
4.Wang, T., Jie, W., Zeng, D., Yang, G., Xu, Y., Liu, W., Zhang, J.Temperature dependence of photoluminescence properties of In-doped cadmium zinc telluride. J. Mater. Res. 23, 1389 (2008)CrossRefGoogle Scholar
5.Dhere, R., Gessert, T., Zhou, J., Asher, S., Pankow, J., Moutinho, H.Investigation of CdZnTe for thin-film tandem solar cell applicationsCompound Semiconductor Photovoltaics edited by R. Noufi, W.N. Shafarman, D. Cahen, and L. Stolt (Mater. Res. Soc. Symp. Proc 763, Warrendale, PA 2006) B8.25Google Scholar
6.Partovi, A., Glass, A.M., Olson, D.H., Zydzik, G.J., Short, K.T., Feldman, R.D., Austin, R.F.High-sensitivity optical-image processing device based on CdZnTe/ZnTe multiple-quantum-well structures. Appl. Phys. Lett. 59, 1832 (1991)CrossRefGoogle Scholar
7.Tang, Z.Y., Kotov, N.A., Giersig, M.Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002)Google Scholar
8.Tang, Z.Y., Zhang, Z.L., Wang, Y., Glotzer, S.C., Kotov, N.A.Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274 (2006)Google Scholar
9.Vydyanath, H.R., Ellsworth, J.A., Fisher, R.F.Vapor-phase equilibria in the Cd1–xZnxTe alloy system. J. Electron. Mater. 22, 1067 (1993)CrossRefGoogle Scholar
10.Babentsov, V., Franc, J., James, R.B.Compensation and trapping in large bandgap semiconductors: Tuning of the defect system in CdZnTe. J. Cryst. Growth 311, 2377 (2009)CrossRefGoogle Scholar
11.Li, Z.J.Micro-photoluminescence mapping on CdZnTe: Zn distribution. J. Appl. Phys. 90, 260 (2001)Google Scholar
12.Selvig, E., Tonheim, C.R., Kongshaug, K.O., Skauli, T., Hemmen, H., Lorentzen, T., Haakenaasen, R.Defects in CdHgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates. J. Vac. Sci. Technol., B 26, 525 (2008)Google Scholar
13.Turjanska, L., Höschl, P., Belas, E., Grill, R., Franc, J., Moravec, P.Defect structure of CdZnTe. Nucl. Instrum. Methods Phys. Res., Sect. A 458, 90 (2001)CrossRefGoogle Scholar
14.Zha, G., Jie, W., Tan, T., Wang, L.Study of dislocations in CdZnTe single crystals. Phys. Status Solidi A 204, 2196 (2007)CrossRefGoogle Scholar
15.Zha, G., Jie, W., Tan, T., Zhang, W., Xu, F.The interface reaction and Schottky barrier between metals and CdZnTe. J. Phys. Chem. C 111, 12834 (2007)Google Scholar
16.Yang, G., Jie, W., Wang, T., Li, G., Li, W., Hua, H.Correlation between ingot diameter and crystal properties of CdZnTe:In grown by the modified Bridgman method. Cryst. Growth Des. 7, 435 (2007)Google Scholar
17.Franc, J., Grill, R., Hlídek, P., Belas, E., Turjanska, L., Höschl, P., Turkevych, I., Toth, A.L., Moravec, P., Sitter, H.The influence of growth conditions on the quality of CdZnTe single crystals. Semicond. Sci. Technol. 16, 514 (2001)CrossRefGoogle Scholar
18.Li, G., Jie, W., Gu, Z., Hua, H.Growth of CdZnTe crystals with different x values and their qualities comparison. J. Cryst. Growth 263, 332 (2004)CrossRefGoogle Scholar
19.Zhang, X.M., Zhao, Z.L., Zhang, P., Ji, R.B., Li, Q.B.Comparison of CdZnTe crystals grown by the Bridgman method under Te-rich and Te-stoichiometric conditions and the annealing effects. J. Cryst. Growth 311, 286 (2009)CrossRefGoogle Scholar
20.Shin, S.H., Bajaj, J., Moudy, L.A., Cheung, D.T.Characterization of Te precipitates in CdTe crystals. Appl. Phys. Lett. 43, 68 (1983)CrossRefGoogle Scholar
21.Kulkarni, G.A., Sathe, V.G., Rao, K.S.R.K., Muthu, D.V.S., Sharma, R.K.Micro-Raman imaging of Te precipitates in CdZnTe (Zn∼4%) crystals. J. Appl. Phys. 105, 063512 (2009)CrossRefGoogle Scholar
22.Wang, T., Jie, W., Zeng, D.Observation of nano-scale Te precipitates in cadmium zinc telluride with HRTEM. Mater. Sci. Eng., A 472, 227 (2008)Google Scholar
23.Li, G., Shih, S-J., Huang, Y., Jie, W.Nanostructures of defects in CdZnTe single crystals. J. Cryst. Growth 311, 85 (2008)Google Scholar