Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T00:30:54.769Z Has data issue: false hasContentIssue false

Structural transformations and metastable phases produced by mechanical deformations in the Bi–Sr–Ca–Cu–O superconducting system

Published online by Cambridge University Press:  31 January 2011

P. Tessier
Affiliation:
Centre for the Physics of Materials, McGill University, Montreal, Quebec, Canada, H3A 2T8
M.L. Trudeau
Affiliation:
Hydro-Québec, Materials Technology Department, Varennes, Quebec, Canada, J3X 1S1
J.O. Ström-Olsen
Affiliation:
Centre for the Physics of Materials, McGill University, Montreal, Quebec, Canada, H3A 2T8
R. Schulz
Affiliation:
Hydro-Québec, Materials Technology Department, Varennes, Quebec, Canada, J3X 1S1
Get access

Abstract

The structural transformations occurring during the mechanical alloying of mixtures of elemental oxides in the Bi–Sr–Ca–Cu–O system have been studied. Metastable cubic structures with complete chemical disorder and amorphous phases can be synthesized by strong mechanical deformations. With proper thermal treatments, these metastable phases transform into the high Tc superconducting structures. Discussions on the mechanisms of formation and on the thermal stability of the various metastable phases are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sand-strom, R. L., Phys. Rev. Lett. 58, 2687 (1987).CrossRefGoogle Scholar
2Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G.W., and Fastnacht, R.A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
3Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
4Su, S.R., O'Connor, M., and Levinson, M., J. Mater. Res. 6, 244 (1991).CrossRefGoogle Scholar
5Hinks, D.G., Soderholm, L., Capone, D.W., Dabrowski, B., Mitchell, A.W., and Shi, D., Appl. Phys. Lett. 53, 423 (1988).CrossRefGoogle Scholar
6Komatsu, T., Imai, K., Sato, R., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L533 (1988).CrossRefGoogle Scholar
7Shi, D., Tang, M., Vandervoort, K., and Claus, H., Phys. Rev. B 39, 9091 (1989).CrossRefGoogle Scholar
8Nassau, R., Miller, A. E., Gyorgy, E. M., and Siegrist, T., J. Mater. Res. 4, 1330 (1989).CrossRefGoogle Scholar
9Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
10Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
11Bruning, R., Altounian, Z., Strbm-Olsen, J. O., and Shultz, L., Mater. Sci. Eng. 97, 317 (1988).CrossRefGoogle Scholar
12Batalla, E. and Zwartz, E. G., J. Mater. Res. 5, 1802 (1990).CrossRefGoogle Scholar
13Lavallee, F., Simoneau, M., L'Esperance, G., and Schulz, R., Phys. Rev. B 44, 12003 (1991).CrossRefGoogle Scholar
14Simoneau, M., Lavallee, F., L'Esperance, G., Trudeau, M., and Schulz, R., Ordering and Disordering in Alloys, edited by Yavari, A. R. (Elsevier Science, New York, 1991).Google Scholar
15JCPDS International Center for Diffraction Data-File #23-127/OBST, Munchberg., Tonind. Zeitg. 6, 92 (1968).Google Scholar
16Carron, E. M., Subramanian, M.A., Calabrese, J. C., and Harlow, R. L., Mater. Res. Bull. XXIII, 1355 (1988).Google Scholar
17Sunshine, S.A., Siegrist, T., Schneemeyer, L.F., Murphy, D.W., Cava, R.J., Batlogg, B., Dover, R.B. van, Fleming, R.M., Glarum, S.H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J.V., Marshall, J.H., Marsh, P., Rupp, L.W. Jr, and Peck, W.F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
18Zheng, H., Xu, R., and Mackenzie, J.D., J. Mater. Res. 4, 911 (1989).CrossRefGoogle Scholar
19Conflant, P., Boivin, J. C., and Thomas, D., J. Solid State Chem. 18, 133 (1976).CrossRefGoogle Scholar
20Guillermo, R., Conflant, P., Boivin, J. C., and Thomas, D., Rev. Chim. Min. 15, 153 (1978).Google Scholar
21Colmenero, J., Ilarraz, J., and Barandiaran, J. M., Thermochim. Acta 35, 381 (1980).CrossRefGoogle Scholar
22Nishi, Y., Manabe, T., Kameyama, H., Moriya, S., Kataragi, T., Uchida, S., and Kawakami, M., J. Mater. Sci. Lett. 9, 801 (1990).CrossRefGoogle Scholar
23Shi, D., Tang, M., Boley, M. S., Hash, M., Vandervoort, K., Claus, H., and Lwin, Y. N., Phys. Rev. B 40, 2247 (1989).CrossRefGoogle Scholar
24Yoshimura, M., Hyun Sung, T. H., Nakagawa, Z-E., and Nakamura, T., J. Mater. Sci. Lett. 8, 687 (1989).CrossRefGoogle Scholar
25Takei, H., Koike, M., Takeya, H., Suzuki, K., and Ichihara, M., Jpn. J. Appl. Phys. 28, L1193 (1989).CrossRefGoogle Scholar
26Nassau, K., Miller, A.E., Gyorgy, E.M., and Siegrist, T., J. Mater. Res. 4, 1330 (1989).CrossRefGoogle Scholar