Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T03:15:29.540Z Has data issue: false hasContentIssue false

Structural relation between a 2D fivefold quasicrystal and crystalline approximants in an Al–Co–Ni–Tb alloy

Published online by Cambridge University Press:  31 January 2011

X. Z. Li
Affiliation:
Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980, Japan
K. Hiraga
Affiliation:
Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980, Japan
Get access

Abstract

A two-dimensional quasicrystal with fivefold symmetry and two large-unit-cell crystalline approximants in an Al–Co–Ni–Tb alloy, which were observed in previous studies, are suggested to be composed of the same kind of atom cluster. Some characteristics of the atom cluster can be deduced from a high-resolution electron microscopy image of the Al–Co–Ni–Tb quasicrystal when the image is associated with a fivefold aperiodic tiling. By using the cut-and-projection method, a quasiperiodic tiling generated by an irrational projection is proposed as an ideal quasilattice of the Al–Co–Ni–Tb quasicrystal; in the meantime, periodic tilings generated by a rational projection present the lattices of the crystalline approximants.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bendersky, L., Phys. Rev. Lett. 55, 1951 (1985).CrossRefGoogle Scholar
2.Chattopadhyay, K., Raganathan, S., Subbanna, G.N., and Thangaraj, N., Scripta Metall. 19, 767 (1985).CrossRefGoogle Scholar
3.Li, X. Z. and Kuo, K.H., Philos. Mag. Lett. 58, 167 (1988).CrossRefGoogle Scholar
4.He, L. X., Wu, Y.K., and Kuo, K. H., J. Mater. Sci. Lett. 7, 1284 (1988).CrossRefGoogle Scholar
5.Fitzgerald, J. D., Withers, R. L., Stewart, A. M., and Calka, A., Philos. Mag. B 58, 15 (1988).CrossRefGoogle Scholar
6.Ma, L., Wang, R. and Kuo, K.H., J. Less-Comm. Met. 163, 37 (1990).CrossRefGoogle Scholar
7.Zhang, H. and Kuo, K.H., Phys. Rev. B 42, 8907 (1990).CrossRefGoogle Scholar
8.Li, X. Z. and Kuo, K.H., Philos. Mag. B 65, 525 (1992).CrossRefGoogle Scholar
9.Hiraga, K. and Sun, W., Philos. Mag. Lett. 67, 117 (1993).CrossRefGoogle Scholar
10.Li, X. Z. and Dubois, J. M., J. Phys.: Condens. Matter 6, 1653 (1994).Google Scholar
11.Hiraga, K., Abe, E., and Matsuo, Y., Philos. Mag. Lett. 70, 155 (1994).CrossRefGoogle Scholar
12.Yu, R. C., Li, X. Z., Xu, D. P., Zhang, Z., Su, W. H., and Kuo, K. H., Philos. Mag. Lett. 67, 287 (1993).CrossRefGoogle Scholar
13.Yu, R. C., Li, X.–Z., Xu, D. P., Zhang, Z., Su, W. H., and Kuo, K. H., Scripta Metall. 31, 1285 (1994).CrossRefGoogle Scholar
14.Li, X. Z., Yu, R. C., Zhang, Z., and Kuo, K. H., Philos. Mag. B 71, 261 (1995).CrossRefGoogle Scholar
15.Li, X. Z., Yu, R. C., Kuo, K. H., and Hiraga, K., Philos. Mag. Lett. (1996, in press).Google Scholar
16.Sun, W. and Hiraga, K., J. Mater. Res. 10, 1146 (1995).CrossRefGoogle Scholar
17.Jaric, M. V., Phys. Rev. B 34, 4685 (1986).CrossRefGoogle Scholar
18.Yamamoto, A. and Ishihara, K. N., Acta Crystallogr. A 44, 707 (1988).CrossRefGoogle Scholar
19.Niizeki, K., J. Phys. A 24, 3641 (1991).CrossRefGoogle Scholar