Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-20T10:28:50.819Z Has data issue: false hasContentIssue false

A structural and calorimetric study of the transformations in sputtered Al–Mn and Al–Mn–Si films

Published online by Cambridge University Press:  31 January 2011

L. C. Chen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
J. L. Robertson
Affiliation:
Physics Department, University of Houston, Houston, Texas 77204-5504
S. C. Moss
Affiliation:
Physics Department, University of Houston, Houston, Texas 77204-5504
K. Hiraga
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980, Japan
Get access

Abstract

Scanning and isothermal calorimetry, together with x-ray diffraction and high resolution transmission electron microscopy (TEM), have been used to characterize Al–Mn and Al–Mn–Si films sputtered onto substrates at 60 °C, 45 °C, and −100 °C. In the case of Al0.83Mn0.17, the monotonically decreasing isothermal calorimetric signal, characteristic of a grain growth process, has proved decisive in identifying the as-sputtered “amorphous” state as microquasicrystalline, with an average grain size of ∼ 20 Å, in agreement with an estimate of correlation range from the x-ray pattern. The TEM at 400 keV reveals well-defined atomic or lattice images in annealed films but only barely resolved grains (ordered clusters) in the as-sputtered films. The relation between the metallic glass and the microquasicrystalline state in these alloys is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lilienfeld, D. A., Nastasi, M., Johnson, H. H., Ast, D. G., and Mayer, J. W., Phys. Rev. Lett. 55, 15871590 (1985).CrossRefGoogle Scholar
2Follstaedt, D. M. and Knapp, J. A., Phys. Rev. Lett. 55, 15911594 (1985).Google Scholar
3Lilienfeld, D. A., Nastasi, M., Johnson, H. H., Ast, D. G., and Mayer, J. W., J. Mater. Res. 1, 237242 (1986).CrossRefGoogle Scholar
4Lilienfeld, D. A., Nastasi, M., Johnson, H. H., Ast, D. G., and Mayer, J. W., Phys. Rev. B 34, 2985–1987 (1986).CrossRefGoogle Scholar
5Follstaedt, D. M. and Knapp, J. A., Nucl. Instrum. Methods in Phys. Res. B 24/25, 542547 (1987).CrossRefGoogle Scholar
6Urban, K., Moser, N., and Kronmüller, H., Phys. Status Solidi A 91, 411 (1985).CrossRefGoogle Scholar
7Urban, K., Bauer, M., Csanady, A., and Mayer, J., Proc. Int. Workshop on Quasicrystals, Beijing, edited by Kuo, K. H. (Trans. Tech. Pub., 1987).Google Scholar
8Drehman, A. J., Pelton, A. R., and Noack, M. A., J. Mater. Res. 1, 741745 (1986).CrossRefGoogle Scholar
9Tsai, A. P., Inoue, A., Bizen, Y., and Masumoto, T., Acta Metall. 37, 14431449 (1989).CrossRefGoogle Scholar
10Chen, L. C. and Spaepen, F., Nature 336, 366368 (1988).CrossRefGoogle Scholar
11Mayer, J., Urban, K., Harle, J., and Steeb, S., Z. Naturforsch. 42a, 113119 (1987).CrossRefGoogle Scholar
12Robertson, J. L., Moss, S. C., and Kreider, K. G., Phys. Rev. Lett. 60, 20622065 (1988).Google Scholar
13Moss, S. C. and Price, D. L., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S. R. (Plenum, New York, 1985).Google Scholar
14Dubois, J. M., Dehghan, K., Janot, C., Chieux, P., and Chenal, B., de, J.Physique 46, C8, 461466 (1985).Google Scholar
15Matsubara, E., Harada, K., Waseda, Y., Chen, H. S., Inoue, A., and Masumoto, T., J. Mater. Sci. 23, 753756 (1988).Google Scholar
16Bendersky, L. A. and Ridder, S. D., J. Mater. Res. 1, 405414 (1986).Google Scholar
17Dunlap, R. A. and Dini, K., J. Mater. Res. 1, 415419 (1986).CrossRefGoogle Scholar
18Inoue, A., Bizen, Y., and Masumoto, T., Metall. Trans. A 19A, 383385 (1988).CrossRefGoogle Scholar
19Kissinger, H. E., Anal. Chem. 29, 17021706 (1957).Google Scholar
20Henderson, D. W., J. Non-Cryst. Solids 30, 301315 (1979).CrossRefGoogle Scholar
21Chen, L. C. and Spaepen, F., submitted to J. Appl. Phys.Google Scholar
22Atkinson, H. V., Acta Metall. 36, 469491 (1988).Google Scholar
23Burke, J. E. and Turnbull, D., Prog. Metal Phys. 3, 220 (1952).CrossRefGoogle Scholar
24Hillert, M., Acta Metall. 13, 227 (1965).Google Scholar
25Thompson, C. V., Frost, H. J., and Spaepen, F., Acta Metall. 35, 887890 (1987).CrossRefGoogle Scholar
26 This value is estimated from a linear fit to the molar volume, determined by lattice parameter measurements, versus composition for the supersaturated Al-rich fee solutions and Al-Mn intermetallic compounds. Turnbull, D., Acta Metall. 38, 243 (1990).Google Scholar
27Gleiter, H. and Chalmers, B., Prog. Mater. Sci. 16, 1342 (1972).Google Scholar
28 Ref. 12, or Bancel, P. A., Heiney, P. A., Stephens, P. W., Goldman, A. I., and Horn, P. M., Phys. Rev. Lett. 54, 2422 (1985).Google Scholar
29Cowley, J. M., Robertson, J. L., and Moss, S. C. (unpublished result).Google Scholar