Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T04:50:26.654Z Has data issue: false hasContentIssue false

Species resolved analysis of the expansion of hydroxyapatite laser ablation plumes

Published online by Cambridge University Press:  31 January 2011

P. Serra
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Spain
J. L. Morenza
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Spain
Get access

Abstract

The plume generated by ablation of hydroxyapatite targets under ArF excimer laser irradiation has been investigated by means of fast intensified charge coupled device (CCD) imaging and optical emission spectroscopy. Results have shown that the plume splits into two plasma clouds as it expands. Time and spatial resolved spectra have revealed that under the experiment conditions emission is mostly due to calcium neutral atoms and calcium oxide molecular radicals. Imaging of the plume with the aid of bandpass filters has demonstrated that the emissive species in the larger and faster plasma cloud are calcium neutral atoms whereas in the smaller and slower one are calcium oxide molecular radicals.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baeri, P., Torrisi, L., Marino, N., and Foti, G., Appl. Surf. Sci. 54, 210 (1992).CrossRefGoogle Scholar
2.Cotell, C. M., Chrisey, D. B., Grabowski, K. S., and Sprague, J. A., J. Appl. Biomaterials 3, 87 (1992).CrossRefGoogle Scholar
3.Cotell, C. M., Appl. Surf. Sci. 69, 140 (1993).CrossRefGoogle Scholar
4.Sardin, G., Varela, M., and Morenza, J. L., in Hydroxyapatite and Related Materials, edited by Brown, P. W. and Constantz, B. (CRC Press, Boca Raton, FL, 1994), p. 225.Google Scholar
5.Jelínek, M., Olsan, V., Jastrabik, L., Studnicka, V., Hnatowicz, V., Kvítek, J., Havránek, V., Dostálová, T., Zergioti, I., Petrakis, A., Hontzopoulos, E., and Fotakis, C., Thin Solid Films 257, 125 (1995).CrossRefGoogle Scholar
6.Bagratashvili, V. N., Antonov, E. N., Sobol, E. N., Popov, V. K., and Howdle, S. M., Appl. Phys. Lett. 66, 2451 (1995).CrossRefGoogle Scholar
7.Serra, P., Palau, J., Varela, M., Esteve, J., and Morenza, J. L., J. Mater. Res. 10, 473 (1995).CrossRefGoogle Scholar
8.Serra, P., Cleries, L., and Morenza, J. L., Appl. Surf. Sci. 96–98, 216 (1996).CrossRefGoogle Scholar
9.Niemz, M. H., Appl. Phys. B 58, 273 (1994).CrossRefGoogle Scholar
10.Striganov, A. R. and Sventitskii, N. S., Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, Washington, DC, 1968).CrossRefGoogle Scholar
11.Pearse, R. W. and Gaydon, A. G., The Identification of Molecular Spectra, 4th ed. (Chapman and Hall, London, 1976).CrossRefGoogle Scholar
12.Girault, C., Damiani, D., Aubreton, J., and Catherinot, A., Appl. Phys. Lett. 55, 182 (1989).CrossRefGoogle Scholar
13.Urbassek, H. M. and Sibold, D., Phys. Rev. Lett. 70, 1886 (1993).CrossRefGoogle Scholar