Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T17:36:31.931Z Has data issue: false hasContentIssue false

Solid-state reaction of Ru powder in molten AlxBi1−x

Published online by Cambridge University Press:  31 January 2011

R. W. Johnson
Affiliation:
W.M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
C. M. Garland*
Affiliation:
W.M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
*
a)Address correspondence to this author.
Get access

Abstract

We describe a low-temperature solid-state interdiffusion technique that allows reaction between spatially separated reacting species and its application in the Al–Ru alloy system. This technique uses a liquid-metal solvent (Bi) as a medium for the transfer of Al to the surface of Ru powder where reaction occurs with the formation of nanocrystalline AlxRu1−x product phases. X-ray diffraction measurements are used to follow the time and temperature dependence of the reaction. Cross-sectional transmission electron microscopy allows direct imaging of the growth and morphology of the AlxRu1−x product phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986); W.L. Johnson, Mater. Sci. and Eng. 97,1 (1988); K. Samwer, Phys. Reports 161, 1 (1988).CrossRefGoogle Scholar
2Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3 This technique, known as isothermal mass transfer, is described, e.g., in Covington, A. K. and Woolf, A. A., J. Nucl. Energy B1, 35 (1959); O.M. Zbozhnaya and V. F. Shatinskii, Fiz-Khim. Mekh. Mater. 9, 43 (1973); G.F. Carter, J. Less-Common Met. 37, 189 (1974); R. J. van Thyne, Thin Solid Films 95, 119 (1982).Google Scholar
4Weeks, J. R., Trans. ASM 58, 302 (1965).Google Scholar
5Schweitzer, D. G. and Weeks, J. R., Trans. ASM 54, 185 (1961).Google Scholar
6Anlage, S.M., Nash, P., Ramachandran, R., and Schwarz, R. B., J. Less-Common Met. 136, 237 (1988). Also see Z. A. Chaudhury, G.V. S. Sastry, and C. Suryanarayana, Z. Metallkde. 73, 201 (1982).CrossRefGoogle Scholar
7Anlage, S. M., Fultz, B., and Krishnan, K. M., J. Mater. Res. 3, 421 (1988). Also see P. A. Bancel and P. A. Heiney, J. Phys. (Paris), Colloq. 47 (3), 341 (1986); D. M. Follstaedt and J.A. Knapp, Mater. Sci. and Eng. 90, 1 (1987).CrossRefGoogle Scholar
8Edshammar, L-E., Acta Chem. Scand. 20, 427 (1966).CrossRefGoogle Scholar
9Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1988s).CrossRefGoogle Scholar
10Edshammar, L-E., Acta Chem. Scand. 22, 2374 (1968).CrossRefGoogle Scholar
11 See, e.g., Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982); R.W. Johnson, C.C. Ahn, and E. R. Ratner, to be published in Phys. Rev. B 15.CrossRefGoogle Scholar