Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T09:46:20.765Z Has data issue: false hasContentIssue false

Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties

Published online by Cambridge University Press:  08 March 2012

Guo Hongxia*
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Cheng Hua
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Li Fan
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Qin Zhenping
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Cui Suping
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Nie Zuoren*
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
*
a)Address all correspondence to these authors. e-mail: hxguo@bjut.edu.cn
Get access

Abstract

A facile method to control the morphology of FeNi3 nanoparticles by solution reduction reaction is presented. The spherical to platelet FeNi3 particles were obtained by changing pH from 11.5 to12.5 with 0.16 mol/L of hydrazine under ultrasound irradiation, with the ratio of Fe2+ to Ni2+ as 1:3. The amount of hydrazine had little influence on the morphology of the particles. The saturation magnetization (Ms) and coercive force (Hc) of the platelet particles were 59 emu/g and 120 Oe, respectively. The real part μ′ of the permeability of the platelet particles was about 2.43–2.71 and was frequency-independent in the range of 0.1–1.0 GHz. The imaginary part (μ′′) of the particles showed increase from 0.04 to 2.14 within the same frequency range.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kuanr, B.K., Veerakumar, V., Lingam, K., Mishra, S.R., Kuanr, A.V., Camley, R.E., and Celinski, Z.: Microstrip-tunable band-pass filter using ferrite (nanoparticles) coupled lines. IEEE Trans. Magn. 45, 4226 (2009).CrossRefGoogle Scholar
2.Liu, X.G., Ou, Z.Q., Geng, D.Y., Han, Z., Xie, Z.G., and Zhang, Z.D.: Broadband and thin microwave absorber of nickel–zinc ferrite/carbonyl iron composite. J. Phys. D: Appl. Phys. 42, 155004 (2009).CrossRefGoogle Scholar
3.Liu, X.G., Li, B., Geng, D.Y., Cui, W.B., Yang, F., Xie, Z.G., Kang, D.J., and Zhang, Z.D.: (Fe,Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47, 470 (2009).CrossRefGoogle Scholar
4.Liu, X.G., Geng, D.Y., Choi, C.J., Kim, J.C., and Zhang, Z.D.: Magnetic properties, complex permittivity and permeability of FeNi nanoparticles and FeNi/AlOx nanocapsules. J. Nanopart. Res. 11, 2097 (2009).CrossRefGoogle Scholar
5.Shirakata, Y., Hidaka, N., Ishitsuka, M., Teramoto, A., and Ohmi, T.: Low-loss composite material containing fine Zn–Ni–Fe flakes for high-frequency applications. IEEE Trans. Magn. 44, 2100 (2008).CrossRefGoogle Scholar
6.Zhao, Y.W., Zhang, X.K., and Xiao, J.Q.: Submicrometer laminated Fe/SiO2 soft magnetic composites—an effective route to materials for high-frequency applications. Adv. Mater. 17, 915 (2005).CrossRefGoogle Scholar
7.Lee, J., Lee, Y., Youn, J.K., Na, H.B., Yu, T., Kim, H., Lee, S.M., Koo, Y.M., Kwak, J.H., Park, H.G., Chang, H.N., Hwang, M., Park, J.G., Kim, J., and Hyeon, T.: Simple one-pot synthesis of uniformly sized functional super-paramagnetic magnetite@silica nanoparticles and their successful application to highly stable cross-linked magnetic-enzyme aggregates. Small 4, 143 (2008).CrossRefGoogle Scholar
8.Gupta, A.K., Naregalkar, R.R., Vaidya, V.D., and Gupta, M.: Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2, 23 (2007).CrossRefGoogle ScholarPubMed
9.Xia, H., Wang, J., Tian, Y., Chen, Q.D., Du, X.B., Zhang, Y.L., He, Y., and Sun, H.B.: Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22, 3204 (2010).CrossRefGoogle ScholarPubMed
10.Figotin, A. and Vitebskiy, I.: Electromagnetic unidirectionality in magnetic photonic crystals. Phys. Rev. B 67, 165210 (2003).CrossRefGoogle Scholar
11.Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
12.Luo, Y., Du, Y., and Misra, V.: Large area nanorings fabricated using an atomic layer deposition Al2O3 spacer for magnetic random-access memory application. Nanotechnology 19, 265301 (2008).CrossRefGoogle ScholarPubMed
13.Tang, N.J., Zhong, W., Jiang, H.Y., Han, Z.D., Zou, W.Q., and Du, Y.W.: Complex permeability of FeNi3/SiO2 core-shell nanoparticles. Solid State Commun. 132, 71 (2004).CrossRefGoogle Scholar
14.Osipov, A.V., Iakubov, I.T., Lagarkov, A.N., Maklakov, S.A., Petrov, D.A., Rozanov, K.N., and Ryzhikov, I.A.: Multi-layered Fe films for microwave applications. PIERS Online 3, 1303 (2007).CrossRefGoogle Scholar
15.Zhao, Y.W., Ni, C.Y., Kruczynski, D., Zhang, X.K., and Xiao, J.Q.: Exchange-coupled soft magnetic FeNi–SiO2 nanocomposite. J. Phys. Chem. B 108, 3691 (2004).CrossRefGoogle Scholar
16.Jartych, E., Zurawicz, J.K., Oleszak, D., and Pekala, M.: X-ray diffraction, magnetization and Mössbauer studies of nanocrystalline Fe–Ni alloys prepared by low- and high-energy ball milling. J. Magn. Magn. Mater. 208, 221 (2000).CrossRefGoogle Scholar
17.Lima, E. Jr., Drago, V., Fichtner, P.F.P., and Domingues, P.H.P.: Tetrataenite and other Fe–Ni equilibrium phases produced by reduction of nanocrystalline NiFe2O4. Solid State Commun. 128, 345 (2003).CrossRefGoogle Scholar
18.Kaloshkin, S.D., Tcherdyntsev, V.V., Tomilin, I.A., Baldokhin, Yu.V., and Shelekhov, E.V.: Phase transformations in Fe–Ni system at mechanical alloying and consequent annealing of elemental powder mixtures. Physica B 299, 236 (2001).CrossRefGoogle Scholar
19.Hong, Y., Rheem, Y., Lai, M., Cwiertny, D.M., Walker, S.L., and Myung, N.V.: Electrochemical synthesis of FexNi1−x nanostructures for environmental remediation. Chem. Eng. J. 151, 66 (2009).CrossRefGoogle Scholar
20.Freeland, J.W., Grigorov, I.L., and Walker, S.C.: Magnetic phase transition in epitaxial Ni1-xFex thin films. Phys. Rev. B 57, 80 (1998).CrossRefGoogle Scholar
21.Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B., and Greneche, J.M.: Characterization of Fe and Fe50Ni50 ultrafine nanoparticless synthesized by inert-gas condensation method. Physica B 404, 3824 (2009).CrossRefGoogle Scholar
22.Lima, E. Jr, Drago, V., de Lima, J.C., and Fichtner, P.F.P.: Nanocrystalline FexNi1−x (x ≤ 0.65) alloys formed by chemical synthesis. J. Alloys Compd. 396, 10 (2005).CrossRefGoogle Scholar
23.Qin, G.W., Pei, W.L., Ren, Y.P., Shimada, Y., Endo, Y., Yamaguchi, M., Okamoto, S., and Kitakami, O.: Ni80Fe20 permalloy nanoparticles: Wet chemical preparation, size control and their dynamic permeability characteristics when composited with Fe micronparticles. J. Magn. Magn. Mater. 321, 4057 (2009).CrossRefGoogle Scholar
24.Lu, X., Liang, G., and Zhang, Y.: Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution. Mater. Sci. Eng., B 139, 124 (2007).CrossRefGoogle Scholar
25.Moustafa, S.F. and Daoush, W.M.: Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications. J. Mater. Process. Technol. 181, 59 (2007).CrossRefGoogle Scholar
26.Lima, E. Jr., Drago, V., Bolsoni, R., and Fichtner, P.F.P.: Nanostructured Fe50Ni50 alloy formed by chemical reduction. Solid State Commun. 125, 265 (2003).CrossRefGoogle Scholar
27.Wang, H., Li, J., Kou, X., and Zhang, L.: Synthesis and characterizations of size-controlled FeNi3 nanoplatelets. J. Cryst. Growth 310, 3072 (2008).CrossRefGoogle Scholar
28.Liao, Q., Tannenbaum, R., and Wang, Z.L.: Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J. Phys. Chem. B 110, 14262 (2006).CrossRefGoogle ScholarPubMed
29.Li, Y.D., Li, C.W., Wang, H.R., Li, L.Q., and Qian, Y.T.: Preparation of pure nickel, cobalt, nickel–cobalt, and nickel–copper alloys by hydrothermal reduction. Mater. Chem. Phys. 59, 88 (1999).CrossRefGoogle Scholar
30.Su, X.B., Zheng, H.G., Yang, Z.P., Zhu, Y.C., and Pan, A.L.: Preparation of nanosized particles of FeNi and FeCo alloy in solution. J. Mater. Sci. 38, 4581 (2003).CrossRefGoogle Scholar
31.Shao, X., Dai, B., and Ma, Y.: Synthesis of Fe3O4 and magnetic nanoparticles with various sizes properties by coprecipitation. J. Funct. Mater. 42, 178 (2011).Google Scholar
32.Dhas, N.A. and Gedanken, A.: Sonochemical preparation and properties of nanostructured palladium metallic clusters. J. Mater. Chem. 8, 445 (1998).CrossRefGoogle Scholar
33.Okitsu, K., Ashokkumar, M., and Grieser, F.: Sonochemical synthesis of gold nanoparticles: Effects of ultrasound frequency. J. Phys. Chem. B 109, 20673 (2005).CrossRefGoogle ScholarPubMed
34.Zhang, J., Du, J., Han, B., Liu, Z., Jiang, T., and Zhang, Z.: Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116 (2006).CrossRefGoogle ScholarPubMed
35.An, Z., Pan, S., and Zhang, J.: Synthesis and tunable assembly of spear-like nickel nanocrystallites: From urchin-like particles to prickly chains. J. Phys. Chem. C 113, 1346 (2009).CrossRefGoogle Scholar
36.Ni, X.M., Zhao, Q.B., Zhang, Y.F., and Zheng, H.G.: Reticular nickel microwires with assembled nanostructures: Synthesis, magnetism and catalysis for the growth of carbon nanotubes. Eur. J. Inorg. Chem. 422 (2007).CrossRefGoogle Scholar
37.Liu, X.H., Yi, R., Wang, Y.T., Qin, G.Z., Zhang, N., and Li, X.G.: Highly ordered snowflakelike metallic cobalt microcrystals. J. Phys. Chem. C 111, 163 (2007).CrossRefGoogle Scholar
38.Shindo, D., Lee, B., Waseda, Y., Muramatsu, A., and Sugimoto, T.: Crystallography of platelet-type hematite particles by electron microscopy. Mater. Trans. JIM 34, 580 (1993).CrossRefGoogle Scholar
39.Chen, S. and Carroll, D.L.: Silver nanoplates: Size control in two dimensions and formation mechanisms. J. Phys. Chem. B 108, 5500 (2004).CrossRefGoogle Scholar
40.Leng, Y.H., Zhang, Y.H., Liu, T., Suzuki, M., and Li, X.G.: Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17, 1797 (2006).CrossRefGoogle ScholarPubMed
41.Zhu, Z., Wei, N., Liu, H., and He, Z.: Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Adv. Powder Technol. 22, 422 (2011).CrossRefGoogle Scholar
42.Zhu, L.P., Xiao, H.M., Zhang, W.D., Yang, Y., and Fu, S.Y.: Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. Cryst. Growth Des. 8, 1113 (2008).CrossRefGoogle Scholar
43.Oskam, G., Hu, Z., Penn, R.L., Pesika, N., and Searson, P.C.: Coarsening of metal oxide nanoparticles. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66, 011403 (2002).CrossRefGoogle ScholarPubMed
44.Hausmanns, B., Krome, T.P., and Dumpich, G.: Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. J. Appl. Phys. 93, 8095 (2003).CrossRefGoogle Scholar
45.Diandra, L.L. and Reuben, D.R.: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770 (1996).Google Scholar
46.Lu, X., Liang, G., Sun, Q., and Yang, C.: High-frequency magnetic properties of FeNi3-SiO2 nanocomposite synthesized by a facile chemical method. J. Alloys Compd. 509, 5079 (2011).CrossRefGoogle Scholar
Supplementary material: Image

Hongxia et al. supplementary material

figure

Download Hongxia et al. supplementary material(Image)
Image 47.8 KB