Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-18T15:41:21.298Z Has data issue: false hasContentIssue false

Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate

Published online by Cambridge University Press:  31 January 2011

R. Joseph Barham
Affiliation:
P.O. Box 207, Glen Aubrey, New York 13777
Get access

Abstract

An infrared study is made of the chemical changes of synthetic schwertmannite, which normally is a coal oxidation by-product formed by thiobacillus ferrooxidan bacteria. Schwertmannite, a class of minerals, is a metastable compound that transforms to jarosite, hematite, and/or basic iron sulfate at relatively low temperatures, and is analogous in structure to basic iron sulfate, but with a –Fe–O– cage. A proposed formula for schwertmannite is Fe4O4(OH)2·AN(2/e) * nH2O, where AN is the anion and e is its charge, where sulfate can be replaced with other anions, a possible catalyst. The facile conversion of schwertmannite to a black or yellow material might make a useful raw material for the pigment industry.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Komraus, J. L., Popiel, E. S., and Mocek, R., Hyperfine Interactions 58, 25892592 (1990).Google Scholar
2.Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B., Nature 362, 834836 (1993).CrossRefGoogle Scholar
3.Sugio, T., Domatsu, C., Munakata, O., Tano, T., and Imai, K., Appl. Environ. Microbiol. 49 (6), 1401–1406 (1985).CrossRefGoogle Scholar
4.Devasia, P., Natarajan, K. A., Sathyanarayana, D. N., and Rao, G. R., Appl. Environ. Microbiol. 59 (12), 40514055 (1993).Google Scholar
5.Grishin, S. I., Bigham, J. M., and Tuovinen, O. H., Appl. Environ. Microbiol. 54 (12), 31013106 (1988).Google Scholar
6.Norton, G. A., Richardson, R. G., Markuszewski, R., and Levine, A. D., Fuel Sci. Technol. Int. 8 (7), 793827 (1990).Google Scholar
7.Norton, G. A., Richardson, R. G., Markuszewski, R., and Levine, A. D., Environ. Sci. Technol. 25, 449455 (1991).Google Scholar
8.Alpers, C. N., Nordstrom, D. K., and Balls, J. W., Sci. Geological Bull. 42 (4), 281298 (1989).Google Scholar
9.Long, D. T., Fegan, N. E., McKee, J. D., Lyons, W. B., Hines, M. E., and Macumber, P. G., Formation of Alunite, Jarosite and Hydrous Iron Oxides in a Hypersaline System: Lake Tyrrell, Victoria, Australia. Chem. Geology 96 (1; 2), 183202 (1992).Google Scholar
10.Murad, E., Bigham, J. M., Bowen, L. H., and Schwertmann, U., Oxidation of Fe(II) under Acid Conditions. Hyperfine Interactions 58, 23732376 (1990).Google Scholar
11.Suzuki, I., Takeuchi, T. L., Yuthasastrakosol, T. D., and Oh, J. K., Appl. Environ. Microbiol. 56 (6), 1620–1626 (1990).Google Scholar
12.Lazaroff, N., Sigal, W., and Wasserman, A., Appl. Environ. Microbiol. 43 (4), 924938 (1982).Google Scholar
13.Lazaroff, N., Melanson, L., Lewis, E., Santoro, N., and Pueschel, C., Geomicrobiol. J. 4 (3), 231268 (1985).Google Scholar
14.Karathanasis, A. D., Thompson, Y. L., and Evangelou, V. P., J. Environ. Quality 19, 389395 (1990).Google Scholar
15.Bhatti, T. M., Bigham, J. M., Carlson, L., and Tuovinen, O. H., Appl. Environ. Microbiol. 59 (6), 19841990 (1993).CrossRefGoogle Scholar
16.Bigham, J. M., Schwertmann, U., Carlson, L., and Murad, E., Geochim. Cosmochim. Acta 54, 27432758 (1990).CrossRefGoogle Scholar
17.Bigham, J. M., Carlson, L., and Murad, E., Mineral. Mag. 58, 641648 (1994).CrossRefGoogle Scholar
18.Murad, E., Schwertmann, U., Bigham, M., and Carlson, L., Environ. Geochem. Sulfide Oxidation, ACS Symposium Service #550, 190–200 (1994).CrossRefGoogle Scholar
19.Nauer, G., Strecha, P., Brinda-Konopik, N., and Liptay, G., J. Therm. Anal. 30, 813830 (1985).Google Scholar
20.Schwertmann, U. and Cornell, R. M., Iron Oxides in the Laboratory: Preparation and Characterization (Weinheim, New York, 1991).Google Scholar
21.Nakamoto, K., Fujita, J., Tanaka, S., and Kobayashi, M., J. Am. Chem. Soc. 79, 49044908 (1957).Google Scholar
22.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986).Google Scholar
23.Harrison, J. B. and Berkheiser, V. E., Clays and Clay Miner. 30 (2), 97102 (1982).Google Scholar
24.Li, R. S., Chen, J. F., Yang, H., Zhang, W. Y., Wei, Q., Jin, M. Z., and Zheng, Y. G., Catalysis Lett. 18, 317322 (1993).CrossRefGoogle Scholar
25.Margulis, E. V., Savchenko, L. A., Shokarev, M. M., Beisekeeva, L. I., and Vershinina, F. I., J. Inorg. Chem., Russian 20 (4), 544548 (1975).Google Scholar
26.Watanabe, H., Gutleben, C. D., and Seto, J., Solid State Ionics 69, 2935 (1994).Google Scholar
27.Rossman, G. R., Am. Mineral. 60, 698704 (1975).Google Scholar
28.Schugar, H. J., Rossman, G. R., and Gray, H. B., J. Am. Chem. Soc. 91 (16), 45644566 (1969).CrossRefGoogle Scholar
29.Verdonck, L., Hoste, S., Roelandt, F. F., and Van Der Kelen, G. P., J. Mol. Struct. 79, 273279 (1982).Google Scholar
30.Schugar, H. J., Rossman, G. R., Barraclough, C. G., and Gray, H. B., J. Chem. Soc. 94 (8), 26832690 (1972).Google Scholar
31.Raman, A., Kuban, B., and Razvan, A., Corro. Sci. 32 (12), 12951306 (1991).CrossRefGoogle Scholar
32.Watanabe, H. and Seto, J., Chem. Soc. Jpn. 59, 26382687 (1986).Google Scholar
33.Powers, D. A., Rossman, G. R., Schugar, H. J., and Gray, H. B., J. Solid State Chem. 13, 113 (1975).Google Scholar
34.Rossman, G. R., Am. Mineral. 61, 398404 (1976).Google Scholar
35.Carlson, L. and Schwertmann, U., Clay Miner. 25, 6571 (1990).CrossRefGoogle Scholar
36.Andreeva, D., Mitov, I., Tabakova, T., and Andreev, A., J. Mater. Sci.: Mater. Electron. 5 (3), 168172 (1994).Google Scholar
37.Schugar, H., Walling, C., Jones, R. B., and Gary, H. B., J. Am. Chem. Soc. 89 (15), 37123720 (1967).Google Scholar
38. Roy Whiteker, A. and Davidson, N., J. Am. Chem. Soc. 75, 30813085 (1953).Google Scholar
39.Rabinowitch, E. and Stockmayer, W. H., J. Am. Chem. Soc. 64, 335347 (1942).Google Scholar
40.Sykes, K. W. and Phil, M. A. D., J. Chem. Soc. London 1, 6474 (1954).Google Scholar
41.Margulis, E. V., Gatskin, L., Zapuskalova, N., and Beiekeeva, L., J. Inorg. Chem., Russian 21 (7), 996999 (1976).Google Scholar
42.Zvyagintsev, O. E. and Lopatto, Yu. S., J. Inorg. Chem., Russian 6 (4), 439442 (1961).Google Scholar
43.Lopez-Delgado, A., Garcia-Martinez, O., and Galvez-Morros, M., J. Therm. Anal. 34, 843852 (1988).CrossRefGoogle Scholar
44.Spiro, T. G., Allerton, S. E., Renner, J., Terzis, A., Bils, R., and Saltman, P., J. Am. Chem. Soc. 88 (12), 27212726 (1966).Google Scholar
45.Lazaroff, N., personal communication, State University of New York at Binghamton, NY (A.K.A. Binghamton University), Biology Department (1995).Google Scholar
46.Margulis, E. V., Savchenko, L. A., Shokarev, M. M., Beisekeeva, L. I., and Vershinina, F. I., J. Inorg. Chem., Russian 20 (7), 10451048 (1975).Google Scholar
47.Waychunas, G. A., Xu, N., Fuller, C. C., Davis, J. A., and Bigham, J. M., Physica B 208/209, 281483 (1995).Google Scholar
48.Kato, T. and Miúra, Y., Mineral. J. 8 (8), 419430 (1977).CrossRefGoogle Scholar
49.Bohacek, J., Subrt, J., Hanslik, T., and Tlaskal, J., J. Mater. Sci. 28, 28272832 (1993).Google Scholar
50.Marshall, P. R. and Rutherford, D., J. Colloid Interface Sci. 37 (2), 390402 (1971).Google Scholar
51.Suzuki, I., Lizama, H. M., and Tackaberry, P. D., Appl. Environ. Microbiol. 55 (5), 11171121 (1989).Google Scholar
52.Lizama, H. M. and Suzuki, I., Appl. Environ. Microbiol. 55 (10), 25882591 (1989).Google Scholar