Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:59:27.071Z Has data issue: false hasContentIssue false

Preparation and ferroelectric properties of mixed composition layered lead zirconate titanate thin films for nonvolatile memory applications

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Dapartment of Materials Science and Engineering, North Carolina University, Raleigh, North Carolina 27695
Dong-Joo Kim
Affiliation:
Dapartment of Materials Science and Engineering, North Carolina University, Raleigh, North Carolina 27695
S. K. Streiffer
Affiliation:
Dapartment of Materials Science and Engineering, North Carolina University, Raleigh, North Carolina 27695
A. I. Kingon
Affiliation:
Dapartment of Materials Science and Engineering, North Carolina University, Raleigh, North Carolina 27695
Get access

Abstract

Mixed composition layered lead zirconate titanate (PZT) films sZr/Ti ratio = 30/70 + 65/35d with stoichiometric lead containing PZT thin layer at the film/electrode interface were successfully fabricated by a modified chemical solution deposition method. These modified PZT thin films are highly (111) textured, and have square-shaped P-E hysteresis loops with large remanent polarization and low coercive field, as well as low saturation voltage. In addition, these films show good fatigue and imprint behavior with Pt electrodes; the retained polarization of the modified film was above 50% after fatigue testing to 109 cycles, and the thermally induced voltage shifts (ΔV) were 0.51 V after heating at 150 °C for 4410 s, two times lower than for films without a stoichiometric thin layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989).Google Scholar
2.Chen, J., Udayakumar, K.R., Brooks, K. G., and Cross, L.E., J. Appl. Phys. 71, 4465 (1992).Google Scholar
3.Mihara, T., Watanabe, H., and Yoshimori, H., Nikkei Electron. 581, 94 (1993).Google Scholar
4.Dormans, G.J. M., Keijer, M. de., and van Veldhoven, P. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 203.Google Scholar
5.Klee, M. and Waser, R., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 437.Google Scholar
6.Schwartz, R.W., Boyle, T. J., Lockwood, S. J., Sinclair, M.B., Dimos, D., and Buchheit, C. D., Int. Ferroelectrics 7, 259 (1995).Google Scholar
7.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64 (5), 2717 (1988).CrossRefGoogle Scholar
8.Kim, S.H., Choi, Y.S., Kim, C. E., and Oh, Y. J., J. Mater. Res. 12, 1576 (1997).CrossRefGoogle Scholar
9.Kim, S.H., Kim, C. E., and Oh, Y.J., J. Mater. Sci. 30, 5639 (1995).Google Scholar
10.Kim, S. H., Hong, J. G., Gunter, J. C., Streiffer, S. K., and Kingon, A. I., in Ferroelectric Thin Films VI, edited by Treece, R. E., Jones, R.E., Desu, S.B., Foster, C.M., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 131.Google Scholar
11.Willems, G.J., Wouters, D. J., Maes, H.E., and Nouwen, R., Integrated Ferroelectrics 15, 19 (1997).Google Scholar
12.Kim, C.J., Yoon, D.S., Jiang, Z.T., and No, K.S., J. Mater. Sci. 32, 1213 (1997).CrossRefGoogle Scholar
13.Adachi, H., Mitsuyu, T., Yamajaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).Google Scholar
14.Al-Shareef, H.N., Dimos, D., Warren, W. L., and Tuttle, B.A., J. Appl. Phys. 80 (8), 4573 (1996).CrossRefGoogle Scholar
15.Warren, W.L., Tuttle, B.A., Dimos, D., Pike, G.E., Al-Shareef, H.N., Ramesh, R., and Evans, J. T. Jr, Jpn. J. Appl. Phys. 35, 1521 (1996).CrossRefGoogle Scholar
16.Warren, W. L., Dimos, D., and Waser, R. W., MRS Bull. 21 (7), 40 (1996).Google Scholar
17.Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Ramesh, R., and Evans, J. T. Jr, Appl. Phys. Lett. 67 (6), 866 (1995).Google Scholar
18.Auciello, O., Gifford, K. D., and Kingon, A. I., Appl. Phys. Lett. 64, 2873 (1994).Google Scholar
19.Kwok, C.K., Vijay, D.P., Desu, S. B., Parikh, N.R., and Hill, E.A., in Proc. 4th Int. Symp. Integrated Ferroelectrics, edited by Paz de Araujo, C. A. (University of Colorado Press, Colorado Springs, CO, 1992), p. 412.Google Scholar
20.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
21.Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).Google Scholar
22.Kingon, A.I., Al-Shareef, H.N., Auciello, O., Gifford, D., Lichtenwalner, D., and Dat, R., U.S. Patent No. 5,555,486 (4 September 1996).Google Scholar
23.Chung, I.S., Lee, J.K., Lee, W.I., Chung, C.W., and Desu, S.B., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 249.Google Scholar
24.Al-Shareef, H.N., Auciello, O., and Kingon, A. I., J. Appl. Phys. 77 (5), 2146 (1995).Google Scholar
25.Al-Shareef, H.N., Dimos, D., Warren, W.L., and Tuttle, B. A., Integrated Ferroelectrics 15, 53 (1997).Google Scholar
26.Change, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
27.Desu, S.B., Phys. Status Solidi 151, 467 (1995).Google Scholar
28.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. 25, 925 (1969).Google Scholar