Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T17:32:12.907Z Has data issue: false hasContentIssue false

Precipitation behavior in the early stage of aging in an Al–Li°Cu–Mg–Zr–Ag (Weldalite 049) alloy

Published online by Cambridge University Press:  31 January 2011

Kap Ho Lee
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taejon 305-764, Korea
Yeung Jo Lee
Affiliation:
Propulsion Department, Agency for Defence Development, Yusung P.O. Box 35-4, Taejon, Korea
Kenji Hiraga
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

The precipitation behavior of various phases during the aging process of an Ag–Li°Cu–Mg–Zr–Ag (Weldalite 049) alloy was investigated by high-resolution electron microscopy and in situ hot-stage microscopy. Two kinds of domains with L12-type ordered structures, which are considered to be δ′ and β′ phases, are observed with different domain sizes in the alloy quenched from 530 °C. In the early stage of aging at 190 °C, the δ′ phase is precipitated as surrounding the β' phase, and the δ′ domains appear with in-phase and antiphase relationships to the β′ lattices. In situ observations at 190 °C clearly show that the T1 phase precipitates predominantly on dislocations at subgrain boundaries and then is homogeneously formed in the matrix with increasing aging time. The nucleation of the S′ phase is associated with clustering of Cu and Mg in the matrix, and the S0 domains are grown with {210} habit planes.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sankaran, K. K. and Grant, N. J., Mater. Sci. Eng. 44, 213 (1980).CrossRefGoogle Scholar
2.Srivatsan, T.S. and Place, T. A., J. Mater. Sci. 24, 1543 (1989).CrossRefGoogle Scholar
3.Sanders, T.H. Jr, and Starke, E. A. Jr, Acta Metall. 30, 927 (1982).CrossRefGoogle Scholar
4.Lynch, S. P., Mater. Sci. Eng. A136, 25 (1991).CrossRefGoogle Scholar
5.Kumar, K. S., Brown, S. A., and Pickens, J. R., Scripta Metall. Mater. 24, 1245 (1990).CrossRefGoogle Scholar
6.Gayle, F. W., Heubaum, F. H., and Pickens, J. R., Scripta Metall. Mater. 24, 79 (1990).CrossRefGoogle Scholar
7.Kumar, K. S., Brown, S. A., and Pickens, J. R., Acta Mater. 44, 1899 (1996).CrossRefGoogle Scholar
8.Gayle, F. W., Heubaum, F. H., and Pickens, J.R., Al-Li Alloys, Proceedings of the Fifth International Al–Li Conference, edited by Sanders, T. H. and Starke, E. A. (MCE Publications, Ltd., Birmingham, U.K., 1989), p. 701.Google Scholar
9.Langan, T.J. and Pickens, J.R., Al-Li Alloys, Proceedings of the Fifth International Al–Li Conference, edited by Sanders, T. H. and Starke, E.A. (MCE Publications, Ltd., Birmingham, U.K., 1989), p. 691.Google Scholar
10.Gregson, P.J. and Flower, H. M., Acta Metall. 33, 527 (1985).CrossRefGoogle Scholar
11.Polmear, I. J. and Chester, R.J., Scripta Metall. 23, 1213 (1989).CrossRefGoogle Scholar
12.Gayle, F.W. and Vandersande, B., Acta Metall. 37, 1033 (1989).CrossRefGoogle Scholar
13.Parsons, J. R., Rainville, M., and Hoelke, C. W., Philos. Mag. 21, 1105 (1970).CrossRefGoogle Scholar
14.Phillips, V.A., Acta Metall. 23, 751 (1975).CrossRefGoogle Scholar
15.Radmilovic, V., Fox, A. G., and Thomas, G., Acta Metall. 37, 2385 (1989).CrossRefGoogle Scholar
16.Hono, K., Babu, S.S., Hiraga, K., Okano, R., and Sakurai, T., Acta Metall. Mater. 40, 3027 (1992).CrossRefGoogle Scholar
17.Makin, P. L. and Ralph, B., J. Mater. Sci. 19, 3835 (1984).CrossRefGoogle Scholar
18.Gayle, F.W. and Vandersande, J. B., Scripta Metall. 18, 473 (1984).CrossRefGoogle Scholar
19.Makin, P.L., Lloyd, D. J., and Stobbs, W. M., Philos. Mag. A51, L41 (1985).CrossRefGoogle Scholar
20.Stimson, W., Tosten, M. H., Howell, P. R., and Williams, D. B., Al–Li Alloys III, edited by Backer, C., Gregson, P. J., Harris, S. J., and Peel, C. J. (The Institute of Metals, London, 1986), p. 386.Google Scholar
21.Haung, J. C. and Ardell, H.J., Mater. Sci. Technol. 3, 176 (1987).Google Scholar
22.Cassada, W.A., Shiflet, G. J., and Starke, E.A. Jr, J. de Phys. 48, C3397 (1987).Google Scholar
23.Cassada, W.A., Shiflet, G. J., and Starke, E. A. Jr, Metall. Trans. 22A, 287 (1991).CrossRefGoogle Scholar
24.Lee, K.H., Hwang, D.H., Cho, S. G., Lee, S. W., and Lee, Y.J., J. Kor. Met. Mater. 32, 1226 (1994).Google Scholar
25.Radmilovic, V., Thomas, G., Shiflet, G. J., and Starke, E. A. Jr, Scripta Metall. 23, 1141 (1989).CrossRefGoogle Scholar
26.Wilson, R.N. and Partridge, P. G., Acta Metall. 13, 1321 (1965).CrossRefGoogle Scholar
27.Gupta, A.K., Gaunt, P., and Chaturvedi, M.C., Philos. Mag. A55, 375 (1987).CrossRefGoogle Scholar