Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-22T01:59:21.423Z Has data issue: false hasContentIssue false

A photoluminescence study of the effect of well thickness in strained InGaAs/AlGaAs heterostructures grown by molecular beam epitaxy

Published online by Cambridge University Press:  03 March 2011

S.F. Yoon
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
K. Radhakrishnan
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
H.M. Li
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
D.H. Zhang
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
Get access

Abstract

Low temperature photoluminescence measurements were carried out on pseudomorphically strained InxGa1−xAs-Al0.28Ga0.72As ternary-on-ternary heterostructures grown by molecular beam epitaxy to investigate the change in the transition energy, linewidth, and intensity as a function of InGaAs well thickness at two different indium compositions, x = 0.10 and x = 0.15, respectively. Sharp exciton peaks as narrow as 4-6 meV were observed from the InGaAs wells grown at 530 °C with 1 min of growth interruption at the top and bottom heterointerfaces. The linewidth decreases as the well thickness is increased up to 300 Å. In addition, there are signs of linewidth broadening and sharp decrease in the photoluminescence intensity at higher well thicknesses that may indicate the onset of plastic relaxation. Relatively small variations in the transition energy were observed at well thicknesses that are up to ≍3 times the theoretical critical layer thickness calculated by the Matthews-Blakeslee model,10 suggesting that the small density of dislocations that may be present may not have a significant effect on the band structure of the well.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zipperian, T. E., Dawson, L. R., Drummond, T. J., Schirber, J. E., and Fritz, I. J., Appl. Phys. Lett. 52, 975 (1988).CrossRefGoogle Scholar
2Huang, K. F., Tai, K., Jewell, J. L., Fischer, R. J., McCall, S. L., and Cho, A. Y., Appl. Phys. Lett. 54, 2192 (1989).CrossRefGoogle Scholar
3Langer, J. M., Delerue, C., Lannoo, M., and Heinrich, H., Phys. Rev. B 38, 7723 (1988).CrossRefGoogle Scholar
4Arent, D. J., Deneffe, K., Van Hoof, C., De Boeck, J., and Borghs, G., J. Appl. Phys. 66, 1739 (1989).CrossRefGoogle Scholar
5Arent, D. J., Phys. Rev. B 41, 9843 (1990).CrossRefGoogle Scholar
6Debbar, N., Biswas, D., and Bhattacharya, P., Phys. Rev. B 40, 1058 (1989).CrossRefGoogle Scholar
7Lin, S. Y., Tsui, D. C., Lee, H., and Ackley, D., Appl. Phys. Lett. 55, 2211 (1989).CrossRefGoogle Scholar
8Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A., and Vallin, J. T., Solid State Commun. 64, 379 (1987).CrossRefGoogle Scholar
9Yoon, S. F., J. Appl. Phys. 71, 158 (1992).Google Scholar
10Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
11Reithmaier, J. P., Cerva, H., and Lösch, R., Appl. Phys. Lett. 54, 48 (1989).CrossRefGoogle Scholar
12Ekenstedt, M. J., Wang, S. M., and Andersson, T. G., Appl. Phys. Lett. 58, 854 (1991).CrossRefGoogle Scholar
13Dixon, R. H. and Goodhew, P. J., J. Appl. Phys. 68, 3163 (1990).CrossRefGoogle Scholar
14Arnaud, G., Allègre, J., Lefebvre, P., Mathieu, H., Howard, L. K., and Dunstan, D. J., Phys. Rev. B 46, 15290 (1992).CrossRefGoogle Scholar
15Tanaka, M., Sakaki, H., Yoshino, J., and Furuta, T., Surf. Sci. 174, 65 (1986).CrossRefGoogle Scholar
16Bacher, G., Kovac, J., Schweizer, H., Forchel, A., Hillmer, H., Nickel, H., Schlapp, W., and Lösch, R., Proc. 20th Int. Conf. on The Physics of Semiconductors (World Scientific, Singapore, 1990), Vol. 2, p. 937.Google Scholar
17Bertolet, D. C., Hsu, J. K., Jones, S. H., and Lau, K. M., Appl. Phys. Lett. 52, 293 (1988).CrossRefGoogle Scholar
18Moore, K. J., Duggan, G., Woodbridge, K., and Roberts, C., Phys. Rev. B 41, 1090 (1990).CrossRefGoogle Scholar
19Miller, R. C., Tu, C. W., Sputz, S. K., and Kopf, R. F., Appl. Phys. Lett. 49, 1245 (1986).CrossRefGoogle Scholar
20Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegmann, W., Solid State Commun. 38, 709 (1981).CrossRefGoogle Scholar
21Bode, M. and Ourmazd, A., J. Vac. Sci. Technol. B 10, 1787 (1992).CrossRefGoogle Scholar
22Warwick, C. A., Jan, W. Y., Ourmazd, A., and Harris, T. D., Appl. Phys. Lett. 56, 2666 (1990).CrossRefGoogle Scholar