Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-02T19:14:44.037Z Has data issue: false hasContentIssue false

Photoinduced formation of colloidal Au by a near-infrared femtosecond laser

Published online by Cambridge University Press:  31 January 2011

Chongjun Zhao*
Affiliation:
Photon Craft Project, Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology, Shanghai, 201800, People's Republic of China
Shiliang Qu
Affiliation:
Photon Craft Project, Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology, Shanghai, 201800, People's Republic of China
Jianrong Qiu
Affiliation:
Photon Craft Project, Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology, Shanghai, 201800, People's Republic of China
Congshan Zhu
Affiliation:
Photon Craft Project, Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology, Shanghai, 201800, People's Republic of China
*
a)Address all correspondence to this author. e-mail: chongjunzhao@mail.siom.ac.cn
Get access

Abstract

A Au colloid was prepared in a 5 mM HAuCl4 solution through irradiation with a focused infrared femtosecond laser at 800 nm. The Au colloid was characterized by absorption spectra, transmission electron microscopy, and x-ray diffraction analysis. The appearance of absorption peak around 526 nm in the absorption spectra and the wine-red color of sample solution HAuCl4 under focused laser irradiation verified the formation of Au colloid. The solution color changed in the order of yellow → orange → wine-red due to the local formation of Au nanoparticles near the focus. The pulse energy, focus position of laser beam, and solvent composite play important roles in formation, grain size, and stability of the Au colloid. A mechanism for the precipitate of Au nanoparticles was proposed, and a multiphoton process of femtosecond laser was involved.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Henglein, A., Chem. Rev. 89, 1861 (1989).Google Scholar
2.Lewis, L.N., Chem. Rev. 93, 2693 (1993).Google Scholar
3.Kastner, M.A., Phys. Today 46, 24 (1993).CrossRefGoogle Scholar
4.Brown, K.R., Fox, A.P., and Natan, M.J., J. Am. Chem. Soc. 118, 1154 (1996).Google Scholar
5.Kurihara, K., Kizling, J., Stenius, P., and Fendler, J.H., J. Am. Chem. Soc. 105, 2574 (1983).CrossRefGoogle Scholar
6.Wang, C., Liu, C., and Shen, T., Chin. Sci. Bull. 43, 268 (1998).Google Scholar
7.Doron, A., Katz, E., and Willner, I., Langmuir 11, 1313 (1995).Google Scholar
8.Zhu, X., Villeneuve, D.M., Naumov, A.Yu., Nikumb, S., and Corkum, P.B.. Appl. Surf. Sci. 152, 138 (1999).Google Scholar
9.Qu, S., Zhao, C., Jiang, X., Fang, G., Gao, Y., Zeng, H., Song, Y., Qiu, J., Zhu, C., and Hirao, K., Chem. Phys. Lett. 368, 352 (2003).Google Scholar
10.Liu, X.J., Moritomo, Y., Machida, A., Nakamura, A., Tanaka, H., and Kawai, T., Phys. Rev. B 63, 115105 (2001).Google Scholar
11.Yonezawa, Y., Sato, T., Miyama, T., Umemura, J., and Takenaka, T., Surf. Rev. Lett. 3, 1109 (1996).Google Scholar
12.Miyoshi, T., Fukuda, H., and Matsuo, N., Jpn. J. Appl. Phys., Part 1 37, 96 (1998).Google Scholar
13.Borsarelli, C.D. and Braslavsky, S.E., J. Phys. Chem. B 102, 6231 (1998).CrossRefGoogle Scholar
14.Bozlee, B.J. and Exarhos, G.J., Thin Solid Films 377–378, 1 (2000).Google Scholar
15.Tanahashi, I. and Tohda, T., J. Am. Ceram. Soc. 79, 1796 (1996).Google Scholar
16.Kurita, H., Takami, A., and Koda, S., Appl. Phys. Lett. 72, 789 (1998).CrossRefGoogle Scholar
17.Powder Diffraction File No. 01–1172 (International Center for Diffraction Data, Newton Square, PA, 1997).Google Scholar
18.Fujiwara, H., Yanagida, S., and Kamat, P.V., J. Phys. Chem. B 103, 2589 (1999).CrossRefGoogle Scholar
19.Link, S., Burda, C., Mohamed, M.B., Nikoobakht, B., and EI-Sayed, M.A., J. Phys. Chem. A 103, 1165 (1999).Google Scholar
20.Niidome, Y., Hori, A., Sato, T., and Yamada, S., Chem. Lett. 29, 310 (2000).CrossRefGoogle Scholar
21.Satoh, N., Hasegawa, H., Tsujii, K., and Kimura, K., J. Phys. Chem. 98, 2143 (1994).CrossRefGoogle Scholar
22.Hirao, K. and Miura, K., J. Non-Cryst. Solids 239, 91 (1998).Google Scholar
23.Qiu, J., Miura, K., Inouye, H., Nishii, J., and Hirao, K., Nucl. Instr. and Meth. in Phys. Res. B 141, 699 (1998).Google Scholar
24.Schaffer, C.B., Brodeur, A., and Mazur, E., Meas. Sci. Technol. 12, 1784 (2001).Google Scholar
25.Schaffer, C.B., Nishimura, N., and Mazur, E., in Time Structure of X-Ray Sources and Its Application, edited by Freund, A.K., Freund, H.P., and Howells, M.R. (Proc. SPIE Annual Meeting 3541, San Diego, CA, 1998), p. 2.CrossRefGoogle Scholar
26.Glezer, E.N. and Mazur, E., Appl. Phys. Lett. 71, 882 (1997).Google Scholar
27.Matsuoka, J., Mizutani, R., Kaneko, S., Nasu, H., Kamiya, K., Kadono, K., Sakaguchi, T., and Miya, M., J. Ceram. Soc. Jpn. 101, 53 (1993).Google Scholar
28.Matsuoka, J., Mizutani, R., Nasu, H., and Kamiya, K., J. Ceram. Soc. Jpn 100, 599 (1992).CrossRefGoogle Scholar