Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T05:51:55.345Z Has data issue: false hasContentIssue false

Photoelectrochemical responses of anodized titanium oxide films

Published online by Cambridge University Press:  31 January 2011

Archana Kar
Affiliation:
Biomedical Engineering, University of Nevada, Reno, Nevada 89557
Ryan Pando
Affiliation:
Chemical Engineering, University of Nevada, Reno, Nevada 89557
Vaidyanathan (Ravi) Subramanian*
Affiliation:
Biomedical Engineering, University of Nevada, Reno, Nevada 89557
*
a)Address all correspondence to this author.e-mail: ravisv@unr.edu
Get access

Abstract

Thin titanium films of 200 nm thickness were prepared by physical vapor deposition over conducting glass plates and anodized to form titanium oxide nanostructured film that demonstrates photoactivity under ultraviolet visible (UV-vis) illumination. Absorbance and photoelectrochemical measurements indicate that the anodized and nitrogen annealed films absorb UV-vis (λ = 300 to 800 nm) illumination to produce a current of 2.5 mA at 0 V and 3 mA at +0.4 V versus Ag/AgCl. A photocurrent of 110 μA and an open-circuit photovoltage (VOC) of 300 mV was noted without application of external bias. Long-term stability tests showed that the photocurrent was stable for 2 h under continuous illumination. The titanium oxide prepared from a small fraction of titanium deposited over conducting glass demonstrates almost similar activity compared with titanium oxides prepared on foils. The material offers promising potential in other applications such as environmental remediation and photocatalytic water splitting.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rajeshwar, K., de Tacconi, N.R., Chenthamarakshan, C.R.Semiconductor-based composite materials: Preparation, properties, and performance. Chem. Mater. 13, 2765 (2001)CrossRefGoogle Scholar
2.Kalyanasundaram, K., Gratzel, M.Photovoltaic performance of injection solar cells and other applications of nanocrystalline oxide layers. Proc. Indian Acad. Sci.-Chem. Sci. 109, 447 (1997)CrossRefGoogle Scholar
3.Raja, K.S., Mahajan, V.K., Misra, M.Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J. Power Sources 159, 1258 (2006)CrossRefGoogle Scholar
4.Macak, J.M., Zlamal, M., Krysa, J., Schmuki, P.Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007)CrossRefGoogle ScholarPubMed
5.Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V.Quantum dot solar cells. Tuning photoresponse through size and shape control of CDSE-TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008)CrossRefGoogle ScholarPubMed
6.Chanmanee, W., Watcharenwong, A., Chenthamarakshan, C.R., Kajitvichyanukul, P., de Tacconi, N.R., Rajeshwar, K.Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J. Am. Chem. Soc. 130, 965 (2008)CrossRefGoogle ScholarPubMed
7.Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P., Mohapatra, S.K.Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light. J. Power Sources 161, 1450 (2006)CrossRefGoogle Scholar
8.Gomez, M., Magnusson, E., Olsson, E., Hagfeldt, A., Lindquist, S.E., Granqvist, C.G.Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness. Sol. Energy Mater. Sol. Cells 62, 259 (2000)CrossRefGoogle Scholar
9.Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006)CrossRefGoogle Scholar
10.Macak, J.M., Tsuchiya, H., Schmuki, P.High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100 (2005)CrossRefGoogle ScholarPubMed
11.Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D., Murakami, T., Fujishima, A.Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112, 253 (2008)CrossRefGoogle Scholar
12.Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J. M., Taveira, L., Fujimoto, S., Kisch, H., Schmuki, P.Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87, 243114 1 (2005)CrossRefGoogle Scholar
13.Chu, S.Z., Wada, K., Inoue, S., Todoroki, S.Fabrication and characteristics of nanostructures on glass by a1 anodization and electrodeposition. Electrochim. Acta 48, 3147 (2003)CrossRefGoogle Scholar
14.Martin, P.M., Monzyk, B.F., Burckle, E.C., Busch, J.R., Gilbert, R.J., Dasse, K.A.Progress towards development of a photolytic artificial lung. Mater. Sci. Eng., B 119, 246 (2005)CrossRefGoogle Scholar
15.Mor, G.K., Varghese, O.K., Paulose, M., Grimes, C.A.Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291 (2005)CrossRefGoogle Scholar
16.Yang, D.J., Kim, H.G., Cho, S.J., Choi, W.Y.Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method. Mater. Lett. 62, 775 (2008)CrossRefGoogle Scholar
17.Subramanian, V., Wolf, E.E., Kamat, P.V.Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105, 11439 (2001)CrossRefGoogle Scholar
18.Subramanian, V., Kamat, P.V., Wolf, E.E.Mass-transfer and kinetic studies during the photocatalytic degradation of an azo dye on optically transparent electrode thin film. Ind. Eng. Chem. Res. 42, 2131 (2003)CrossRefGoogle Scholar
19.Sohn, Y., Smith, Y., Misra, M., Subramanian, V.Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl. Catal., B 84, 372 (2008)CrossRefGoogle Scholar
20.Xiao, P., Garcia, B.B., Guo, Q., Liu, D.W., Cao, G.Z.TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem. Commun. 9, 2441 (2007)CrossRefGoogle Scholar
21.Raja, K.S., Gandhi, T., Misra, M.Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem. Commun. 9, 1069 (2007)CrossRefGoogle Scholar
22.Robel, I., Subramanian, V., Kuno, M.K., Kamat, P.V.Quantum dot solar cells. Harvesting light energy with CDSE nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385 (2006)CrossRefGoogle ScholarPubMed
23.Zhang, G., Huang, H., Zhang, Y., Chan, H.L.W., Zhou, L.Highly ordered nanoporous TiO2 and its photocatalytic properties. Electrochem. Commun. 9, 2854 (2007)CrossRefGoogle Scholar
24.Subramanian, V.Nanostructured semiconductor composites for solar cells. Interface 16, 32 (2007)Google Scholar
25.Kar, A., Smith, Y., Subramanian, V.Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 43, 3260 (2009)CrossRefGoogle ScholarPubMed
26.Mohapatra, S.K., Misra, M., Mahajan, V.K., Raja, K.S.A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362 (2007)CrossRefGoogle Scholar
27.Lei, L.C., Su, Y.L., Zhou, M.H., Zhang, X.W., Chen, X.Q.Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Mater. Res. Bull. 42, 2230 (2007)CrossRefGoogle Scholar
28.Vinodgopal, K., Bedja, I., Kamat, P.V.Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180 (1996)CrossRefGoogle Scholar
29.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)CrossRefGoogle Scholar
30.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005)CrossRefGoogle ScholarPubMed