Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T08:19:47.475Z Has data issue: false hasContentIssue false

Organic light-emitting diodes with hydrogenated In-doped ZnO thin films as transparent conductive electrodes

Published online by Cambridge University Press:  31 January 2011

Young Ran Park
Affiliation:
Department of Physics, Institute of Basic Science and Center for Nanotubes and Nanocomposites, Sungkyunkwan University, Suwon 440-746, Korea
Young Sung Kim*
Affiliation:
Advanced Material Process of Information Technology, Sungkyunkwan University, Suwon 440-746, Korea
*
a)Address all correspondence to this author. e-mail: youngsk@skku.edu
Get access

Abstract

Hydrogenated In-doped ZnO (ZIO:H) films grown at different ratios, R, of hydrogen to argon were deposited at a substrate temperature of 100 °C for the organic light-emitting diodes (OLEDs). The OLEDs with the ZIO:H (R = 0.08) anode achieved a maximum luminance efficiency of 3.4 cd/A and a power efficiency of 0.6 lm/W, which are as good as the values of the control device fabricated on a tin-doped indium oxide (ITO) anode. This indicates that the efficiency of the OLEDs is critically affected by the ratio of injected hydrogen gas during the deposition of the ZIO and that the ZIO:H developed herein is promising as an alternative to conventional ITO.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kawano, K., Ito, N., Nishimori, T.Sakai, J.: Open circuit voltage of stacked bulk heterojunction organic solar cells. Appl. Phys. Lett. 88, 073514 2006CrossRefGoogle Scholar
2Kim, H., Horwitz, J.S., Kim, W.H., Makinen, A.J., Kafafi, Z.H.Chrisey, D.B.: Doped ZnO thin films as anode materials for organic light-emitting diodes. Thin Solid Films 420–421, 539 2002Google Scholar
3Kim, H., Horwitz, J.S., Kushuto, G.P., Qadri, S.B., Kafafi, Z.H.Chrisey, D.B.: Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes. Appl. Phys. Lett. 78, 1050 2001Google Scholar
4He, Y.Kanicki, J.: High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates. Appl. Phys. Lett. 76, 661 2000Google Scholar
5Yamamori, A., Hayashi, S., Koyama, T.Taniguchi, Y.: Transparent organic light-emitting diodes using metal acethylacetonate complexes as an electron injective buffer layer. Appl. Phys. Lett. 78, 3343 2001CrossRefGoogle Scholar
6Homma, S., Miyamoto, A., Sakamoto, S., Kishi, K., Motoi, N.Yoshimura, K.: Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur. Respir. J. 25, 200 2005Google Scholar
7Homma, T., Ueno, T., Sekizawa, K., Tanaka, A.Hirata, M.: Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J. Occup. Health 45, 137 2003CrossRefGoogle Scholar
8Kim, H., Gilmore, C.M., Horwitz, J.S., Pique, A., Murata, H., Kushto, G.P., Schlaf, R., Kafafi, Z.H.Chrisey, D.B.: Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76, 259 2000CrossRefGoogle Scholar
9Park, S.M., Ikegami, T.Ebilhara, K.: Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition. Jpn. J. Appl. Phys. 44, 8027 2005CrossRefGoogle Scholar
10Jiang, X., Wong, F.L., Fung, M.K.Lee, S.T.: Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875 2003Google Scholar
11Kim, H., Horwitz, J.S., Kim, W.H., Qadri, S.B.Kafafi, Z.H.: Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes. Appl. Phys. Lett. 83, 3809 2003Google Scholar
12Hu, J.Gordon, R.G.: Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71, 880 1992CrossRefGoogle Scholar
13Kang, J.H., Park, Y.R.Kim, K.J.: Spectroscopic ellipsometry study of Zn1–xMgxO thin films deposited on Al2O3(0001). Solid State Commun. 115, 127 2000CrossRefGoogle Scholar
14Kim, K.J.Park, Y.R.: Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. Lett. 78, 475 2001CrossRefGoogle Scholar
15Jeong, S.H., Park, B.N., Yoo, D.G., Boo, J.H.Jung, D.J.: Al-ZnO Thin films as transparent conductive oxides: Synthesis, characterization, and application tests. Korean Phys. Soc. 50, 622 2007Google Scholar
16Qadri, S.B., Kim, H., Horwitz, J.S.Chrisey, D.B.: Transparent conducting films of ZnO–ZrO2: Structure and properties. J. Appl. Phys. 88, 6564 2005Google Scholar
17Kim, J.H., Ahn, B.D., Lee, C.H., Jeon, K.A., Kang, H.S.Lee, S.Y.: Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J. Appl. Phys. 100, 113515 2005Google Scholar
18Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 2000CrossRefGoogle Scholar
19Van de Walle, C.G.Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 2003CrossRefGoogle ScholarPubMed
20Myong, S.Y.Lim, K.S.: Highly stable and textured hydrogenated ZnO thin films. Appl. Phys. Lett. 82, 3206 2003CrossRefGoogle Scholar
21Janotti, A.Van de Walle, C.G.: Hydrogen multicentre bonds. Nat. Mater. 6, 44 2007CrossRefGoogle ScholarPubMed
22Myong, S.Y.Lim, K.S.: Alternate deposition and hydrogen doping technique for ZnO thin films. J. Cryst. Growth 293, 253 2006CrossRefGoogle Scholar
23Lavrov, E.V., Weber, J., Borrnert, F., Van de Walle, C.G.Helbig, R.: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 2002CrossRefGoogle Scholar
24Lavrov, E.V., Weber, J., Borrnert, F., Van Walle, C.G. deHelbig, R.: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO. Phys. Rev. B 71, 035205 2005CrossRefGoogle Scholar
25McCluskey, M.D., Jokela, S.J., Zhuraviev, K.K., Simson, P.J.Lynn, K.G.: Infrared spectroscopy of hydrogen in ZnO. Appl. Phys. Lett. 81, 3807 2002CrossRefGoogle Scholar
26Wolden, C.A., Barnes, T.M., Baxter, J.B.Aydil, E.S.: Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films. J. Appl. Phys. 97, 043522 2005CrossRefGoogle Scholar
27Li, X., Keyes, B., Asher, S., Zhang, S.B., Wei, S.H., Coutts, T.J., Limpijumnong, S.L.Van de Walle, C.G.: Hydrogen passivation effect in nitrogen-doped ZnO thin films. Appl. Phys. Lett. 86, 122107 2005CrossRefGoogle Scholar
28Takahashi, Y., Kanamori, M., Kondon, A., Minoura, H.Ohya, Y.: Photoconductivity of ultrathin zinc oxide films. Jpn. J. Appl. Phys. 33, 6611 1994CrossRefGoogle Scholar
29Sang, B., Dairiki, K., Yamada, A.Konagai, M.: High-efficiency amorphous silicon solar cells with ZnO as front contact. Jpn. J. Appl. Phys. 38, 4983 1999CrossRefGoogle Scholar
30Wardle, M.G., Goss, J.P.Briddon, P.R.: Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys. Rev. B 72, 155108 2005Google Scholar
31Ziegler, E., Heinrich, A., Oppermann, H.Stover, G.: Electrical properties and non-stoichiometry in ZnO single crystals. Phys. Status Solidi A 66, 635 1981Google Scholar
32Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 1954Google Scholar
33Moss, T.S.: The interpretation of the properties of indium Antimonide. Proc. Phys. Soc. (London), Ser. B 67, 775 1954CrossRefGoogle Scholar