Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T03:22:08.087Z Has data issue: false hasContentIssue false

Newly designed organic/inorganic film for optical second-harmonic generation

Published online by Cambridge University Press:  31 January 2011

Tomokatsu Hayakawa
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan
Dai Imaizumi
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan
Masayuki Nogami
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan
Get access

Abstract

In this paper we report the fabrication of organic/inorganic film for optical secondharmonic generation by a sol-gel method for the purpose of the improvement of thermal stability and chemical resistance. The film contains the azo dye Disperse Orange 3 protected by poly(vinylpyrrolidone) in a reticulation of silica gel, whose structure was developed by the spinodal decomposition and the gel-forming process as temperature increased. Corona-poling at elevated temperature could successively induce the optical second-harmonic nonlinearities. The dependence of temperature and field strength on the second-harmonic intensity was also investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Prasad, P.N. and Ulrich, D.R., Nonlinear Optics and Electroactive Polymers (Plenum, New York, 1988).CrossRefGoogle Scholar
2.Singh, B.P. and Prasad, P.N., J. Opt. Soc. Am. B5, 453 (1988).Google Scholar
3.Lattes, A., Haus, H.A., Leoberger, F.J., and Ippen, E.P., IEEE J. Quantum Electron. QE–19, 1718 (1983).CrossRefGoogle Scholar
4.Williams, D.J., Angew. Chem., Int. Ed. Engl. 23, 690 (1984).CrossRefGoogle Scholar
5.Hayden, L.M., Anderson, B.L., Lam, J.Y.S, Higgins, B.G., Stroeve, P., and Kowel, S.T., Thin Solid Films 160, 379 (1988).CrossRefGoogle Scholar
6.Takahashi, T., Miller, P., Chen, Y.M., Samuelson, L., Galotti, D., Mandal, B.K., Kumar, J., and Tripathy, S.K., J. Polymer Sci. 31, 165 (1993).Google Scholar
7.Singer, K.D., Kuzyk, M.G., and Sohn, J.E., J. Opt. Soc. Am. B4, 968 (1987).CrossRefGoogle Scholar
8.Sugihara, O., Kunioka, S., Nonaka, Y., Aizawa, R., Koike, Y., Kinoshita, T., and Sasaki, K., J. Appl. Phys. 70, 7249 (1991).CrossRefGoogle Scholar
9.Eich, A., Sen, A., Looser, H., Bjorklund, G.C., Swalen, J.D., Twieg, R., and Yoon, D.Y., J. Appl. Phys. 66, 2559 (1989).Google Scholar
10.Jeng, R.J., Chen, Y.M., Chen, J.I., Kumar, J., and Tripathy, S.K., Macromolecules 26, 2530 (1992).CrossRefGoogle Scholar
11.Kalluri, S., Shi, Y., Steier, W.H., Yang, Z., Xu, C., Wu, B., and Dalton, L.R., Appl. Phys. Lett. 65, 2651 (1994).CrossRefGoogle Scholar
12.Chen, M., Yu, L., Dalton, L.R., Shi, Y., and Steier, W.H., Macromolecules 24, 5421 (1991).CrossRefGoogle Scholar
13.Nakanishi, K., Komura, H., Takahashi, R., and Soga, N., Bull. Chem. Soc. Jpn. 67, 1327 (1994).CrossRefGoogle Scholar
14.Toki, M., Chow, T.Y., Ohnaka, T., Samura, H., and Saegusa, T., Polymer Bull. 29, 653 (1992).Google Scholar
15.Singer, K.D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248 (1986).CrossRefGoogle Scholar
16.Meredith, G.R., van Dusen, J.G., and Williams, D.H., Macromolecules 15, 1385 (1982).CrossRefGoogle Scholar
17.Pantelis, P., Hill, J.R., and Davies, G.J., in Nonlinear Optical and Electroactive Polymer, edited by Prasad, P.N. and Ulrich, D.R. (Plenum, New York, 1988), p. 229.CrossRefGoogle Scholar
18.Mortazavi, M.A., Knoesen, A., Kowel, S.T., Higgins, B.G., and Dienes, A., J. Opt. Soc. Am. B6, 733 (1989).Google Scholar
19.Hill, R.A., Knoesen, A., and Mortazavi, M.A., Appl. Phys. Lett. 65, 1733 (1994).CrossRefGoogle Scholar
20.Yamaoka, K. and Charney, E., J. Am. Chem. Soc. 94, 8963 (1972).CrossRefGoogle Scholar
21.Jerphagnon, J. and Kurtz, S.K., J. Appl. Phys. 41, 1667 (1970).CrossRefGoogle Scholar
22.Kleinman, D.A., Phys. Rev. 126, 1977 (1962).CrossRefGoogle Scholar
23.Mandel, B.K., Chen, Y.M., Lee, J.Y., Kumar, J., and Tripathy, S., Appl. Phys. Lett. 58, 2459 (1991).CrossRefGoogle Scholar
24.Xu, C., Wu, B., Todorova, O., Dalton, L.R., Shi, Y., Ranon, P.M., and Steier, W.H., Macromolecules 26, 5303 (1993).CrossRefGoogle Scholar
25.Lee, S., Park, B., Lee, S.D., Park, G., and Kim, Y.D., Optical and Quantum Electronics 27, 411 (1995).CrossRefGoogle Scholar
26.Jeng, R.J., Hsiue, G.H., Chen, J.I., Marturunkakul, S., Li, L., Jiang, X.L., Moody, R.A., Masse, C.E., Kumar, J., and Tripathy, S.K., J. Appl. Polymer Sci. 55, 209 (1995).CrossRefGoogle Scholar