Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T12:30:28.711Z Has data issue: false hasContentIssue false

New insights on the crystalline forms in binary systems of n-alkanes: Characterization of the solid ordered phases in the phase diagram tricosane + pentacosane

Published online by Cambridge University Press:  31 January 2011

F. Rajabalee*
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798 au CNRS Université Bordeaux I, F-33405 Talence Cedex, France
V. Métivaud
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798 au CNRS Université Bordeaux I, F-33405 Talence Cedex, France
D. Mondieig
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798 au CNRS Université Bordeaux I, F-33405 Talence Cedex, France
Y. Haget
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798 au CNRS Université Bordeaux I, F-33405 Talence Cedex, France
M. A. Cuevas-Diarte
Affiliation:
Departament de Cristal.lografia, Universitat de Barcelona, Marti i Franquès, E-08028 Barcelona, Spain
*
a)Address all correspondence to this author. e-mail: frajabal@frbdx11.cribx1.u-bordeaux.fr
Get access

Abstract

X-ray diffraction analyses of the pure components n-tricosane and n-pentacosane and of their binary mixed samples have enabled us to characterize the crystalline phases observed at “low temperature.” Contrary to what was announced in literature on the structural behavior of mixed samples in odd-odd binary systems with Δn = 2, the three domains are not all orthorhombic. This work has enabled us to show that two of the domains are, in fact, monoclinic (Aa, Z = 4), and the other one is orthorhombic (Pca21, Z = 4). The conclusions drawn in this work can easily be transposed to other binary systems of n-alkanes.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roblès, L., Mondieig, D., Haget, Y., and Cuevas-Diarte, M.A., J. Chim. Phys. 95, 92 (1998).CrossRefGoogle Scholar
2.Espeau, P., Roblès, L., Mondieig, D., Haget, Y., Cuevas-Diarte, M. A., and Oonk, H.A.J, J. Chim. Phys. 93, 1217 (1996).CrossRefGoogle Scholar
3.Müller, A. and Lonsdale, M., Acta Crystallogr. 1, 129 (1948).Google Scholar
4.Shearer, H. M. M. and Vand, V., Acta Crystallogr. 9, 379 (1956).CrossRefGoogle Scholar
5.Sullivan, P.K. and Weeks, J.J., J. Res. NBS A 74, 203 (1970).Google Scholar
6.Reynhardt, E. C., Fenrych, J., and Basson, I., J. Phys.: Condens. Matter 6, 7605 (1994).Google Scholar
7.Teare, P. W., Acta Crystallogr. 12, 294 (1959).CrossRefGoogle Scholar
8.Kobayashi, M., Kobayashi, T., Ito, Y., Chatani, Y., and Tadokoro, H., J. Chem. Phys. 72, 2024 (1980).CrossRefGoogle Scholar
9.Snyder, R. G., Maroncelli, M., Qi, S. P., and Strauss, H. L., Science 214, 188 (1981).Google Scholar
10.Urabe, Y. and Takamizawa, K., Technology Reports of Kyusyu University 67, 85 (1994).Google Scholar
11.Doucet, J., Denicolo, I., and Craievich, A., J. Chem. Phys. 75 (3), 1523 (1981).Google Scholar
12.Doucet, J., Denicolo, I., Craievich, A., and Collet, A., J. Chem. Phys. 75 (10), 5125 (1981).Google Scholar
13.Denicolo, I., Doucet, J., and Craievich, A. F., J. Chem. Phys. 78 (3), 1465 (1983).CrossRefGoogle Scholar
14.Doucet, J., Denicolo, I., Craievich, A. F., and Germain, C., J. Chem. Phys. 80 (4), 1647 (1984).Google Scholar
15.Ungar, G., J. Phys. Chem. 87, 689 (1983).Google Scholar
16.Maroncelli, M., Qi, S. P., Strauss, H.L., and Snyder, R.G., J. Am. Chem. Soc. 104, 6237 (1982).CrossRefGoogle Scholar
17.Srivastava, S. P., Handoo, J., Agrawal, K. M., and Joshi, G. C., J. Phys. Chem. Solids 54 (6), 639 (1993).Google Scholar
18.Craig, S. R., Hastie, G. P., Roberts, H. J., and Sherwood, J. N., J. Mater. Chem. 4 (6), 977 (1994).Google Scholar
19.Sirota, E. B., King, H. E. Jr, Singer, D. M., and Shao, H. H., J. Chem. Phys. 98 (7), 5809 (1993).Google Scholar
20.Sirota, E. B., King, H. E. Jr, Shao, H. H., and Singer, D. M., J. Phys. Chem. 99, 798 (1995).CrossRefGoogle Scholar
21.Nozaki, K., Higashitani, N., Yamamoto, T., and Hara, T., J. Chem. Phys. 103 (13), 5762 (1995).CrossRefGoogle Scholar
22.Roblès, L., European thesis of the University of Bordeaux I, France (1995).Google Scholar
23.Poirier, B., thesis of the University of Bordeaux I, France (1996).Google Scholar
24.Rajabalee, F., Espeau, P., and Haget, Y., Mol. Cryst. Liq. Cryst. 269, 165 (1995).Google Scholar
25.Espeau, P., Oonk, H. A. J., van der Linde, P. R., Alcobe, X., and Haget, Y., J. Chim. Phys. 92, 747 (1995).Google Scholar
26.Roblès, L., Mondieig, D., Haget, Y., Cuevas-Diarte, M. A., and Alcobe, X., Mol. Cryst. Liq. Cryst. 281, 279 (1996).CrossRefGoogle Scholar
27.Roblès, L., Espeau, P., Mondieig, D., Haget, Y., and Oonk, H. A. J., Thermochim. Acta 274, 61 (1996).Google Scholar
28.Lüth, H., Nyburg, S. C., Robinson, P. M., and Scott, H. E., Mol. Cryst. Liq. Cryst. 27, 337 (1974).Google Scholar
29.Gerson, A. R. and Nyburg, S. C., Acta Crystallogr. B50, 252 (1994).Google Scholar
30.Smith, A. E., Acta Crystallogr. 10, 802 (1957).Google Scholar
31.Achour-Boudjema, Z., Bourdet, J.B., Petitjean, D., and Dirand, M., J. Mol. Struct. 354, 197 (1995).CrossRefGoogle Scholar
32.Achour, Z., Barbillon, P., Bouroukba, M., and Dirand, M., Thermochim. Acta 204, 187 (1992).CrossRefGoogle Scholar
33.Achour-Boudjema, Z., Bouroukba, M., and Dirand, M., Thermochim. Acta 276, 243 (1996).CrossRefGoogle Scholar
34.Jouti, B., Bourdet, J. B., Bouroukba, M., and Dirand, M., Mol. Cryst. Liq. Cryst. 270, 159 (1995).Google Scholar
35.Jouti, B., Provost, E., Petitjean, D., Bouroukba, M., and Dirand, M., Mol. Cryst. Liq. Cryst. 287, 275 (1996).CrossRefGoogle Scholar
36.Nouar, H., Petitjean, D., Bourdet, J. B., Bouroukba, M., and Dirand, M., Thermochim. Acta 293, 87 (1997).Google Scholar
37.Jouti, B., Provost, E., Petitjean, D., Bouroukba, M., and Dirand, M., J. Mol. Struct. 382, 49 (1996).Google Scholar
38.Dirand, M., Achour, Z., Jouti, B., Sabour, A., and Gachon, J. C., Mol. Cryst. Liq. Cryst. 275, 293 (1996).Google Scholar
39.Rajabalee, F., European thesis of the University of Bordeaux I, France (1998).Google Scholar
40.Métivaud, V., Rajabalee, F., Mondieig, D., Haget, Y., and Cuevas-Diarte, M. A., Chem. Mater. (in press).Google Scholar
41.Métivaud, V., Rajabalee, F., Cuevas-Diarte, M. A., Calvet, T., Mondieig, D., and Haget, Y., Anales de Quimica (in press).Google Scholar
42.Retief, J. J., Engel, D. W., and Boonstra, E. G., J. Appl. Crystallogr. 18, 156 (1985).Google Scholar
43.Haget, Y., Courchinoux, R., Housty, J. R., Chanh, N. B., Cuevas-Diarte, M. A., Tauler, E., Calvet, T., and Estop, E., Calorim. Anal. Therm. XVIII, 255 (1987).Google Scholar
44.Courchinoux, R., Chanh, N. B., Haget, Y., Tauler, E., and Cuevas-Diarte, M. A., Thermochim. Acta 128, 45 (1988).Google Scholar
45.Smith, A. E., J. Chem. Phys. 21, 2229 (1953).Google Scholar
46.Piesczek, W., Strobl, G. R., and Malzahn, K., Acta Crystallogr. B30, 1278 (1974).Google Scholar
47.Ewen, B., Strobl, G. R., and Richter, D., Faraday Discuss. Chem. Soc. 69, 19 (1980).CrossRefGoogle Scholar
48.Nozaki, K., Yamamoto, T., and Hikosaka, M., J. Phys. Soc. Jpn. 66 (11), 3333 (1997).CrossRefGoogle Scholar
49.Nyburg, S. C. and Potworowski, J. A., Acta Crystallogr. B29, 347 (1973).Google Scholar
50.Dorset, D. L., Proc. Natl. Acad. Sci. U.S.A. 87, 8541 (1990).Google Scholar
51.Dorset, D. L., Proc. Natl. Acad. Sci. U.S.A. 30, 451 (1997).Google Scholar
52.FULLPROF, a program for Rietveld refinement and pattern matching analyses, Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the International Union of Crystallography, edited by Rodriguez-Carvajal, J., Toulouse, (1990), p. 127.Google Scholar
53.Haget, Y., Bonpunt, L., Michaud, F., Negrier, P., Cuevas-Diarte, M.A., and Oonk, H. A. J., J. Appl. Crystallogr. 23, 492 (1990).CrossRefGoogle Scholar
54.Maroncelli, M., Qi, S. P., Strauss, H.L., and Snyder, R.G., J. Am. Chem. Soc. 104, 6237 (1982).Google Scholar
55.Graig, S. R., Hastie, G. P., and Roberts, K. J., J. Mater. Sci. 15, 1193 (1996).Google Scholar
56.Maroncelli, M., Qi, S. P., Strauss, H. L., and Snyder, R. G., J. Am. Chem. Soc. 104, 623 (1982).CrossRefGoogle Scholar
57.Kim, Y., Strauss, H. L., and Snyder, R. G., J. Am. Chem. Soc. 93, 7520 (1989).Google Scholar
58.Maroncelli, M., Strauss, H. L., and Snyder, R. G., J. Phys. Chem. 89, 5260 (1985).Google Scholar
59.Kim, Y., Strauss, H. L., and Snyder, R. G., J. Phys. Chem. 93, 485 (1989).Google Scholar