Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:43:29.642Z Has data issue: false hasContentIssue false

Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: Mechanisms of phase selection and particle morphology evolution

Published online by Cambridge University Press:  03 March 2011

Seung-Min Oh
Affiliation:
National Institute for Materials Science, Advanced Materials Laboratory, Tsukuba, Ibaraki 305-0044, Japan
Ji-Guang Li
Affiliation:
National Institute for Materials Science, Advanced Materials Laboratory, Tsukuba, Ibaraki 305-0044, Japan
Takamasa Ishigaki*
Affiliation:
National Institute for Materials Science, Advanced Materials Laboratory, Tsukuba, Ibaraki 305-0044, Japan
*
a) Address all correspondence to this author. e-mail: ISHIGAKI.Takamasa@nims.go.jp
Get access

Abstract

Titanium dioxide nanopowders were synthesized by in-flight oxidation of titanium nitride (TiN) in radio-frequency (rf) induction thermal plasma. The powders were characterized by x-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, and optical microscopy to reveal the mechanisms of phase selection and particle morphology evolution. The reaction began with surface oxidation of TiN particles, leading to the formation of core-shell composites with oxidized shells and TiN cores, followed by gas-phase condensation of TiO2 nanoparticles. Phase selection of the resultant TiO2 powders was found to largely depend on the oxidation potential of the thermal plasma rather than on the heat transfer itself. Anatase content of the products increased steadily with increasing the O2 input, and TiO2 nanoparticles (∼50 nm) containing ∼90% of anatase were obtained through O2/Ar plasma treatment. Phase-pure rutile nanoparticles (∼50 nm, on average) were also synthesized in H2/Ar plasma injected with O2 as the powder carrier gas.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Linsebigler, A.L., Lu, G. and Yates, J.T.: Photocatalysis on TiO2 surfaces—Principle, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
2.Fujishima, A., Rao, T.N. and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev 1, 1 (2000).CrossRefGoogle Scholar
3.Malato, S., Blanco, J., Vidal, A. and Richter, C.: Photocatalysis with solar energy at a pilot-plant scale: An overview. Appl. Catal. Environ. 37, 1 (2002).CrossRefGoogle Scholar
4.Oh, S-M., Kim, S-S., Lee, J.E., Ishigaki, T. and Park, D-W.: Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films 435, 252 (2003).CrossRefGoogle Scholar
5.Lanata, M., Cherchi, M., Zapettini, A., Pietralunga, S.M. and Martinelli, M.: Titania inverse opals for infrared optical applications. Opt. Mater. 17, 11 (2001).CrossRefGoogle Scholar
6.Holland, B.T., Blanford, C.F. and Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 (1998).CrossRefGoogle ScholarPubMed
7.Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
8.Siegel, R.W.: Nanophase materials assembled from atom clusters. Mater. Sci. Eng. B 19, 37 (1993).CrossRefGoogle Scholar
9.Lin, H.M., Keng, C.H. and Tung, C.Y.: Hydrogen sulfide detection by nanocrystal PT doped TiO2-based gas sensors. Nanostruct. Mater 6, 1001 (1995).CrossRefGoogle Scholar
10.Ovenstone, J.: Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36, 1325 (2001).CrossRefGoogle Scholar
11.Wang, C.C. and Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).CrossRefGoogle Scholar
12.Hanley, T.L., Luca, V., Pickering, I. and Howe, R.F.: Structure of titania sol-gel films: A study by x-ray absorption spectroscopy. J. Phys. Chem. B 106, 1153 (2002).CrossRefGoogle Scholar
13.Vemury, S., Pratsinis, S.E. and Kibbey, L.: Electrically-controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders. J. Mater. Res. 12, 1031 (1997).CrossRefGoogle Scholar
14.Vemury, S. and Pratsinis, S.E.: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).CrossRefGoogle Scholar
15.Jang, H.D. and Kim, S-K.: Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor. Mater. Res. Bull. 36, 627 (2001).CrossRefGoogle Scholar
16.Li, Y-L. and Ishigaki, T.: Synthesis and structural characterization of titanium oxide and composites by thermal plasma oxidation of titanium carbide. Thin Solid Films 407, 79 (2002).CrossRefGoogle Scholar
17.Li, Y-L. and Ishigaki, T.: Synthesis of cryatalline micron spheres of titanium dioxide by thermal plasma oxidation of titanium carbide. Chem. Mater. 13, 1577 (2001).CrossRefGoogle Scholar
18.Oh, S-M., Gong, J-G. and Park, D-W.: Synthesis of ultrafine TiO2 powder using thermal plasma. J. Chem. Eng. Jpn. 34, 283 (2001).CrossRefGoogle Scholar
19.Boulos, M.I., Fauchais, P. and Pfender, E.: Thermal plasmas: Fundamentals and applications, Vol. 1 (Plenum Press, New York, 1994).CrossRefGoogle Scholar
20.Fukumasa, O.: Synthesis of new ceramics from powder mixtures using thermal plasma processing. Thin Solid Films 390, 37 (2001).CrossRefGoogle Scholar
21.Ananthapadmanabhan, P.V., Taylor, P.R. and Zhu, W.: Synthesis of titanium nitride in a thermal plasma reactor. J. Alloys Compd. 287, 126 (1999).CrossRefGoogle Scholar
22.Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D. and Micheel, B.: Nanoparticle formation using a plasma expansion process. Plasma Chem. Plasma Process. 15, 581 (1995).CrossRefGoogle Scholar
23.Li, Y-L. and Ishigaki, T.: Thermodynamic analysis of nucleation for anatase and rutile from TiO2 melt. J. Cryst. Growth. 242, 511 (2002).CrossRefGoogle Scholar
24.Suyama, Y., Ito, K. and Kato, A.: Mechanism of rutile formation in vapor phase oxidation of titanium tetrachloride by oxygen. J. Inorg. Nucl. Chem. 37, 1883 (1975).CrossRefGoogle Scholar
25.Oyama, T., Iimura, Y., Takeuchi, K. and Ishii, T.: Synthesis of rutile and anatase TiO2 fine particles by laser-ignited vapour-phase reaction. J. Mater. Sci. Lett. 15, 594 (1996).CrossRefGoogle Scholar
26.Syarif, D.G., Miyashita, A., Yamaki, T., Sumita, T., Choi, Y. and Itoh, H.: Preparation of anatase and rutile thin films by controlling oxygen partial pressure. App. Surf. Sci. 193, 287 (2002).CrossRefGoogle Scholar
27.Eriksson, G. and Hack, K.: ChemSage Version 4.01. (GTT Technologies, Herzogenrath, Germany, 1998).Google Scholar
28.Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
29.Fan, X., Ishigaki, T., Suetsugu, Y., Tanaka, J. and Sato, Y.: In-flight nitridation of molybdenum disilicide powders by an induction plasma. J. Am. Ceram. Soc. 81, 2517 (1998).CrossRefGoogle Scholar
30.Roy, R. and White, W.B.: Growth of titanium oxide crystals of controlled stoichiometry and order. J. Cryst. Growth 13/14, 78 (1972).CrossRefGoogle Scholar
31.Li, Y-L. and Ishigaki, T.: Core-shell micron-scale composite of titanium oxide and carbide formed through controlled thermal plasma oxidation. Chem. Phys. Lett. 367, 561 (2003).CrossRefGoogle Scholar
32.Ohsaka, T., Izumi, F. and Fujiki, Y.: Raman-spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
33.Balachandran, U. and Eror, N.G.: Raman spectra of titanium dioxide. J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
34.Ishigaki, T., Li, Y-L. and Kataoka, E.: Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. J. Am. Ceram. Soc. 86, 1456 (2003).CrossRefGoogle Scholar
35.Evance, R.C.: An Introduction to Crystal Chemistry, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1966), pp. 180183.Google Scholar
36.Li, Y-L. and Ishigaki, T.: Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B. 108, 15536 (2004).CrossRefGoogle Scholar