Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T12:00:53.875Z Has data issue: false hasContentIssue false

Morphology and molecular orientation of thin-film bis(triisopropylsilylethynyl) pentacene

Published online by Cambridge University Press:  31 January 2011

Jihua Chen
Affiliation:
Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109
David C. Martin*
Affiliation:
Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109
John E. Anthony
Affiliation:
Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506
*
a)Address all correspondence to this author. e-mail: milty@umich.edu
Get access

Abstract

As a modification to the insoluble and herringbone-structured pentacene, bis(triisopropylsilylethynyl) (TIPS) pentacene has two bulky side groups, leading to good solubility in common organic solvents and regular π–π stacking arrangements in the crystalline state. Solution processing of TIPS–pentacene thin films was investigated as a function of various process parameters in this work. Electron diffraction results suggested that TIPS–pentacene molecules tended to align with the acene unit edge on to the substrate, touching down with their bulky side groups. In a TIPS–pentacene polycrystalline film, the long axis of individual crystallite is [2 1 0], while the shorter axis is [1 ¯20]. High-resolution electron microscopy was used to study the local crystal structure and characteristic defects of TIPS–pentacene thin films. Due to the nonaromatic side groups, TIPS–pentacene was found to be significantly more sensitive to the electron beam (critical dose Jc= 0.05 C/cm2at 300 kV) than pentacene itself (Jc= 0.2 C/cm2at 100 kV).

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klauk, H., Gundlach, D.J., Nichols, J.A.Jackson, T.N.: Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans. Electron Devices 46, 1258 1999CrossRefGoogle Scholar
2Dimitrakopoulos, C.D., Brown, A.R.Pomp, A.: Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J. Appl. Phys. 80, 2501 1996CrossRefGoogle Scholar
3Kane, M.G., Campi, J., Hammond, M.S., Cuomo, F.P., Greening, B., Sheraw, C.D., Nichols, J.A., Gundlach, D.J., Huang, J.R., Kuo, C.C., Jia, L., Klauk, H.Jackson, T.N.: Analog and digital circuits using organic thin-film transisotrs on polyester substrates. IEEE Electron Device Lett. 21, 534 2000CrossRefGoogle Scholar
4Klauk, H., Gundlach, D.J.Jackson, T.N.: Fast organic thin-film transistor circuits. IEEE Electron Device Lett. 20, 289 1999CrossRefGoogle Scholar
5Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J.Drzaic, P.: Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. U.S.A. 98, 4835 2001CrossRefGoogle ScholarPubMed
6Mach, P., Rodrigues, S.J., Nortrup, R., Wiltzius, P.Rogers, J.A.: Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin film transistors. Appl. Phys. Lett. 78, 3592 2001CrossRefGoogle Scholar
7Sheraw, C.D., Zhou, L., Huang, J.R., Gundlach, D.J., Jackson, T.N., Kane, M.G., Hill, I.G., Hammond, M.S., Campi, J., Greening, B.K., Franci, J.West, J.: Organic thin-film transistor-driven polymer-dispered liquid crystal displays on flexible polymeric substrate. Appl. Phys. Lett. 80, 1088 2002CrossRefGoogle Scholar
8Anthony, J.E., Eaton, D.L.Parkin, S.R.: A road map to stable, soluble, easily crystallized pentacene derivatives. Org. Lett. 4, 15 2002CrossRefGoogle ScholarPubMed
9Anthony, J.E., Brooks, J.S., Eaton, D.L.Parkin, S.R.: Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482 2001CrossRefGoogle ScholarPubMed
10Brooks, J.S., Eaton, D.L., Anthony, J.E., Parkin, S.R., Brill, J.W.Sushko, Y.: Electronic and optical properties of functionalized pentacene compounds in the solid state. Curr. Appl. Phys. 1, 301 2001CrossRefGoogle Scholar
11Haddon, R.C., Chi, X., Itkis, M.E., Anthony, J.E., Eaton, D.L., Siegrist, T., Mattheus, C.C.Palstra, T.T.M.: Band electronic structure of one- and two-dimensional pentacene molecular crystals. J. Phys. Chem. B 106, 8288 2002CrossRefGoogle Scholar
12Troisi, A., Orlandi, G.Anthony, J.E.: Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units. Chem. Mater. 17, 5024 2005CrossRefGoogle Scholar
13Sheraw, C.D., Jackson, T.N., Eaton, D.L.Anthony, J.E.: Functionalized pentacene active layer organic thin-film transistors. Adv. Mater. 15, 2009 2003CrossRefGoogle Scholar
14Tokumoto, T., Brooks, J.S., Clinite, R., Wei, X., Anthony, J.E., Eaton, D.L.Parkin, S.R.: Photoresponse of the conductivity in functionalized pentacene compounds. J. Appl. Phys. 92, 5208 2002CrossRefGoogle Scholar
15Ostroverkhova, O., Cooke, D.G., Shcherbyna, S., Egerton, R.F., Hegmann, F.A., Tykwinski, R.R.Anthony, J.E.: Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements. Phys. Rev. B: Solid State 71, 035204 2005CrossRefGoogle Scholar
16Park, S.K., Kuo, C.C., Anthony, J.E.Jackson, T.N.: High mobility solution-processed OTFTs. Int. Electron Dev. Mtg. Tech. Digest. 2006, 113 2005Google Scholar
17Brandrup, J.Immergut, E.H.: Polymer Handbook3rd ed, (Wiley, New York, 1989)Google Scholar
18Chen, J., Tee, C.K., Shaw, C., Shtein, M., Martin, D.C.Anthony, J.E.: Thermal and mechanical cracking in TIPS pentacene thin films. J. Polym. Sci., Part B: Polym. Phys. 44, 3631 2006CrossRefGoogle Scholar
19Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters CRC Press Boca Raton, FL 1983Google Scholar
20Chen, J., Anthony, J.E.Martin, D.C.: Crystallographic cracking during a thermally-induced solid-state phase transformation in TIPS pentacene. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 46, 539 2005Google Scholar
21Chen, J., Anthony, J.E.Martin, D.C.: Thermally induced solid-state phase transition of TIPS pentacene crystals. J. Phys. Chem. B. 110, 16397 2006CrossRefGoogle Scholar
22Payne, M.M., Parkin, S.R., Anthony, J.E., Kuo, C.C.Jackson, T.N.: Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V.s. J. Am. Chem. Soc. 127, 4986 2005CrossRefGoogle Scholar
23Chen, J.: Structure, processing, and properties of the organic molecular semiconductor bis(triisopropylsilylethynyl) (TIPS) pentacene. Ph.D. Thesis, the University of Michigan, Ann Arbor, MI, 2006Google Scholar
24Drummy, L.F., Yang, J.Y.Martin, D.C.: Low-voltage electron microscopy of polymer and organic molecular thin films. Ultramicroscopy 99, 247 2004CrossRefGoogle ScholarPubMed
25Drummy, L.F.Martin, D.C.: Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films. Adv. Mater. 17, 903 2005CrossRefGoogle Scholar
26Holmes, D., Kumaraswamy, S., Matzger, A.J.Vollhardt, K.P.C.: On the nature of nonplanarity in the [N]phenylenes. Chem. Eur. J. 5, 3399 19993.0.CO;2-V>CrossRefGoogle Scholar
27Martinez, J.P., Locateli, D., Balladore, J.L.Trinquier, J.: Radiation damage in electron microscopy of organic specimens at very high voltages. Ultramicroscopy 8, 437 1982CrossRefGoogle Scholar
28Kumar, S.Adams, W.W.: Electron beam damage in high-temperature polymers. Polymer 31, 15 1990CrossRefGoogle Scholar
29Martin, D.C.Thomas, E.L.: Experimental high-resolution electron-microscopy of polymers. Polymer 36, 1743 1995CrossRefGoogle Scholar