Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T16:34:19.534Z Has data issue: false hasContentIssue false

Modified carbon nanotubes as broadband optical limiting nanomaterials

Published online by Cambridge University Press:  03 March 2011

Kok Chung Chin
Affiliation:
NUS Nanoscience and Nanotechnology Initiative, and Department of Physics, National University of Singapore (NUS), Singapore 117542
Amarsinh Gohel
Affiliation:
Department of Physics, National University of Singapore, Singapore 117542
Hendry Izaac Elim
Affiliation:
Department of Physics, National University of Singapore, Singapore 117542
Weizhe Chen
Affiliation:
Department of Physics, National University of Singapore, Singapore 117542
Wei Ji
Affiliation:
Department of Physics, National University of Singapore, Singapore 117542
Ghee Lee Chong
Affiliation:
NUS Nanoscience and Nanotechnology Initiative, National University of Singapore (NUS), Singapore 117542
Chorng Haur Sow
Affiliation:
NUS Nanoscience and Nanotechnology Initiative, and Department of Physics, National University of Singapore (NUS), Singapore 117542
Andrew T.S. Wee*
Affiliation:
NUS Nanoscience and Nanotechnology Initiative, and Department of Physics, National University of Singapore (NUS), Singapore 117542
*
a) Address all correspondence to this author. e-mail: phyweets@nus.edu.sg
Get access

Abstract

Carbon nanotubes have been shown to be effective broadband optical limiters for nanosecond laser pulses. In this paper, we review the recent developments of carbon nanotube-based optical limiters, in particular the effects of modifying carbon nanotubes for device applications. The techniques used to modify carbon nanotubes mainly include thin film coating, doping, and blending with optical absorbing dye. These modifications can greatly enhance the optical limiting performance of carbon nanotubes, with the goal of fabricating an optimal optical limiter system.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sun, X., Yu, R.Q., Xu, G.Q., Hor, T.S.A., Ji, W.: Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73, 3632 (1998).CrossRefGoogle Scholar
2.Pirio, G., Legagneux, P., Pribat, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I.: Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode. Nanotechnol. 13, 1 (2002).CrossRefGoogle Scholar
3.Elim, H.I., Ji, W., Ma, G.H., Lim, K.Y., Sow, C.H., Huan, C.H.A.: Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films. Appl. Phys. Lett. 85, 1799 (2004).CrossRefGoogle Scholar
4.Belousova, I.M., Mironova, N.G., Scobelev, A.G., Yur’ev, M.S.: The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles. Opt. Commun. 235, 445 (2004).CrossRefGoogle Scholar
5.Riggs, J.E., Walker, D.B., Carroll, D.L., Sun, Y.P.: Optical limiting properties of suspended and solubilized carbon nanotubes. J. Phys. Chem. B 104, 7071 (2000).CrossRefGoogle Scholar
6.Lauret, J., Voisin, C., Cassabois, G., Tignon, J., Delalande, C., Roussignol, Ph., Jost, O., Capes, L.: Third-order opticalnonlinearities of carbon nanotubes in the femtosecond regime. Appl. Phys. Lett. 85, 3572 (2004).CrossRefGoogle Scholar
7.Lim, S.H., Elim, H.I., Gao, X.Y., Wee, A.T.S., Ji, W., Lee, J.Y., Lin, J.: Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes. Phys. Rev. B 73, 045402 (2006).CrossRefGoogle Scholar
8.Vivien, L., Riehl, D., Hache, F., Anglaret, E.: Optical limiting properties of carbon nanotubes. Physica B (Amsterdam) 323, 233 (2002).CrossRefGoogle Scholar
9.Sun, X., Xiong, Y.N., Chen, P., Lin, J., Ji, W., Lim, J.H., Yang, S.S., Hagan, D.J., Van Stryland, E.W.: Investigation of an optical limiting mechanism in multiwalled carbon nanotubes. Appl. Opt. 39, 1998 (2000).CrossRefGoogle ScholarPubMed
10.Mishra, S.R., Rawat, H.S., Mehendale, S.C., Rustagi, K.C., Sood, A.K., Bandyopadhyay, R., Govindaraj, A., Rao, C.N.R.: Optical limiting in single-walled carbon nanotube suspensions. Chem. Phys. Lett. 317, 510 (2000).CrossRefGoogle Scholar
11.Chen, P., Wu, X., Sun, X., Lin, J., Ji, W., Tan, K.L.: Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82, 2548 (1999).CrossRefGoogle Scholar
12.Xu, J.F., Czerw, R., Webster, S., Carroll, D.L., Ballato, J., Nesper, R.: Nonlinear optical transmission in VOx nanotubes and VOx nanotube composites. Appl. Phys. Lett. 81, 1711 (2002).CrossRefGoogle Scholar
13.Qu, S.L., Song, Y.L., Liu, H.F., Wang, Y.X., Gao, Y.C., Liu, S.T., Zhang, X.R., Li, Y.L., Zhu, D.B.: A theoretical and experimental study on optical limiting in platinum nanoparticles. Opt. Commun. 203, 283 (2002).CrossRefGoogle Scholar
14.Qu, S.L., Song, Y.L., Du, C.M., Wang, Y.X., Gao, Y.C., Liu, S.T., Li, Y.L.: Nonlinear optical properties in three novel nanocomposites with gold nanoparticles. Opt. Commun. 196, 317 (2001).CrossRefGoogle Scholar
15.Pan, H., Chen, W.Z., Lim, S.H., Poh, C.K., Wu, X.B., Feng, Y.P., Ji, W., Lin, J.Y.: Photoluminescence and optical limiting properties of silicon nanowires. J. Nanosci. Nanotech. 5, 733 (2005).CrossRefGoogle ScholarPubMed
16.Nashold, K.M., Walter, D.P.: Investigations of optical limiting mechanisms in carbon particles suspensions and fullerene solutions. J. Opt. Soc. Am. B 12, 1228 (1995).CrossRefGoogle Scholar
17.Vincent, D., Petit, S., Chin, S.L.: Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser. Appl. Opt. 41, 2944 (2002).CrossRefGoogle Scholar
18.Vivien, L., Riehl, D., Lancon, P., Hache, F., Anglaret, E.: Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions. Opt. Lett. 26, 223 (2001).CrossRefGoogle ScholarPubMed
19.Jin, Z.X., Huang, L., Goh, S.H., Xu, G., Ji, W.: Size-dependent optical limiting behavior of multi-walled carbon nanotubes. Chem. Phys. Lett. 352, 328 (2002).CrossRefGoogle Scholar
20.Vivien, L., Riehl, D., Delouis, J.F., Delaire, J.A., Hache, F.: Picosecond and nanosecond polychromatic pump-probe studies of bubble growth in carbon-nanotube suspensions. J. Opt. Soc. Am. B 19, 208 (2002).CrossRefGoogle Scholar
21.Till, S.J., Till, J., Milsom, P.K., Rowlands, G.: A new model for laser-induced thermal damage in the retina. Bull. Math. Biol. 65, 731 (2003).CrossRefGoogle ScholarPubMed
22.Zuclich, J.A., Edsall, P.R., Lund, D.J., Stuck, B.E., Hollins, R.C., Till, S.J., Smith, P.A., Mclin, L.N., Kennedy, P.: Variation of laser induced retinal-damage threshold with retinal image size. J. Laser Appl. 12, 74 (2000).CrossRefGoogle Scholar
23.Jin, Z.X., Sun, X., Xu, G., Goh, S.H., Ji, W.: Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett. 318, 505 (2000).CrossRefGoogle Scholar
24.Li, C., Liu, C., Li, F., Gong, Q.: Optical limiting performance of two soluble multi-walled carbon nanotubes. Chem. Phys. Lett. 380, 201 (2003).CrossRefGoogle Scholar
25.Chin, K.C., Gohel, A., Elim, H.I., Ji, W., Chong, G.L., Lim, K.Y., Sow, C.H., Wee, A.T.S.: Optical limiting properties of amorphous SixNy and SiC coated carbon nanotubes. Chem. Phys. Lett. 383, 72 (2004).CrossRefGoogle Scholar
26.Chin, K.C., Gohel, A., Chen, W.Z., Elim, H.I., Ji, W., Chong, G.L., Sow, C.H., Wee, A.T.S.: Gold and silver coated carbon nanotubes: An improved broad-band optical limiter. Chem. Phys. Lett. 409, 85 (2005).CrossRefGoogle Scholar
27.Francois, L., Mostafavi, M., Belloin, J., Delouis, J., Delaire, J., Feneyrou, P.: Optical limitation induced by gold clusters. 1. Size effect. J. Phys. Chem. B. 104, 6133 (2000).CrossRefGoogle Scholar
28.Ispasoiu, R.G., Balogh, L., Varnavski, O.P., Tomalia, D.A., Goodson, T.: Large optical limiting from novel metal-dendrimer nanocomposite materials. J. Am. Chem. Soc. 122, 11005 (2000).CrossRefGoogle Scholar
29.Philip, R., Kumar, G.R., Sandhyarani, N., Pradeep, T.: Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys. Rev. B 62, 13160 (2000).CrossRefGoogle Scholar
30.Sun, Y.P., Riggs, J.E., Rollins, H.W., Guduru, R.: Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions. J. Phys. Chem. B 103, 77 (1999).CrossRefGoogle Scholar
31.Zhan, C., Li, D., Zhang, D., Xu, W., Nie, Y., Zhu, D.: The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting. Opt. Mater. 26, 11 (2004).CrossRefGoogle Scholar
32.Farajian, A.A., Esfarjani, K., Kawazoe, Y.: Nonlinear coherent transport through doped nanotube junctions. Phys. Rev. Lett. 82, 5084 (1999).CrossRefGoogle Scholar
33.Li, T., Wang, J.N., Zhang, Y.M.: Electrical transport in doped one-dimensional nanostructures. J. Nanosci. Nanotechnol. 5, 1435 (2005).CrossRefGoogle ScholarPubMed
34.Huang, J.W., Bai, S.J.: Light emitting, diodes of fully conjugated heterocyclic aromatic rigid-rod polymer doped with multi-wall carbon nanotubes. Nanotechnol. 16, 1406 (2005).CrossRefGoogle Scholar
35.Gohel, A., Chin, K.C., Zhu, Y.W., Sow, C.H., Wee, A.T.S.: Field-emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon 43, 2530 (2005).CrossRefGoogle Scholar
36.Wang, X.B., Liu, Y.Q., Yu, G., Xu, C.Y., Zhang, J.B., Zhu, D.B.: Anisotropic electrical transport properties of aligned carbon nanotube films. J. Phys. Chem. B 105, 9422 (2001).CrossRefGoogle Scholar
37.Xu, J., Xiao, M., Czerw, R., Carroll, D.L.: Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes. Chem. Phys. Lett. 389, 247 (2004).CrossRefGoogle Scholar
38.Izard, N., Menard, C., Riehl, D., Doris, E., Mioskowski, C., Anglart, E.: Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting. Chem. Phys. Lett. 391, 124 (2004).CrossRefGoogle Scholar
39.Fuks, I., Nunzi, J.M., Sahraoui, B., Kityk, I.V., Berdowski, J., Caminade, A.M., Majoral, J.P., Martineau, A.C., Frere, P., Roncali, J.: Novel nonlinear optical organic materials. Dithienylethylenes Opt. Commun. 209, 461 (2002).Google Scholar
40.Khoo, I.C., Diaz, A., Ding, J.W.: Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses. J. Opt. Soc. Am. B 21, 1234 (2004).CrossRefGoogle Scholar
41.Webster, S., Reyes-Reyes, M., Pedron, X., Lopez-Sandoval, R., Terrones, M., Carroll, D.L.: Enhanced nonlinear transmittance by complementary nonlinear mechanisms: A reverse-saturable absorbing dye blended with nonlinear-scattering carbon nanotubes. Adv. Mater. 17, 1239 (2005).CrossRefGoogle Scholar
42.Swatton, S.N.R., Welford, K.R., Till, S.J., Sambles, J.R.: Nonlinear absorption of a carbocyanine dye 1,1′,3,3,3′,3′-hexamethylindotricarbocyanine iodine using a Z-scan technique. Appl. Phys. Lett. 66, 1868 (1995).CrossRefGoogle Scholar
43.Lepkowicz, R., Kobyakov, A., Hagan, D.J., Van Stryland, E.W.: Picosecond optical limiting in reverse saturable absorbers: A theoretical and experimental study. J. Opt. Soc. Am. B 19, 94 (2002).CrossRefGoogle Scholar
44.Deng, X., Zhang, X., Wang, Y., Song, Y., Liu, S., Li, C.: Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting. Opt. Commun. 168, 207 (1999).CrossRefGoogle Scholar