Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-03T10:47:13.626Z Has data issue: false hasContentIssue false

Microstructures of GaN films deposited on (001) and (111) Si substrates using electron cyclotron resonance assisted-molecular beam epitaxy

Published online by Cambridge University Press:  03 March 2011

S.N. Basu
Affiliation:
Department of Manufacturing Engineering, Boston University, Boston, Massachusetts 02215
T. Lei
Affiliation:
Molecular Beam Epitaxy Laboratory, Department of Electrical Engineering, Boston University, Boston, Massachusetts 02215
T.D. Moustakas
Affiliation:
Molecular Beam Epitaxy Laboratory, Department of Electrical Engineering, Boston University, Boston, Massachusetts 02215
Get access

Abstract

The microstructures of GaN films, grown on (001) and (111) Si substrates by a two-step method using Electron Cyclotron Resonance assisted-Molecular Beam Epitaxy (ECR-MBE), were studied by electron microscopy techniques. Films grown on (001) Si had a predominantly zinc-blende structure. The GaN buffer layer, grown in the first deposition step, accommodated the 17% lattice mismatch between the film and substrate by a combination of misoriented domains and misfit dislocations. Beyond the buffer layer, the film consisted of highly oriented domains separated by inversion domain boundaries, with a substantial decrease in the defect density away from the interface. The majority of defects in the film were stacking faults, microtwins, and localized regions having the wurtzite structure. The structure of the GaN films grown on (111) Si was found to be primarily wurtzite, with a substantial fraction of twinned zinc-blende phase. Occasional wurtzite grains, misoriented by a 30°twist along the [0001] axis, were also observed. A substantial diffusion of Si was seen in films grown on both substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, R. F., Proc. IEEE 79, 702 (1991).CrossRefGoogle Scholar
2Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).CrossRefGoogle Scholar
3Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).CrossRefGoogle Scholar
4Moustakas, T. D., Lei, T., and Molnar, R. J., Physica B 185, 36 (1993).CrossRefGoogle Scholar
5Harris, J. S. Jr., Koch, S. M., and Rosner, S. J., in Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 3.Google Scholar
6Pankove, J. I., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 515.Google Scholar
7Paisley, M. J., Sitar, Z., Posthill, J. B., and Davis, R. F., J. Vac. Sci. Technol. A 7, 701 (1989).CrossRefGoogle Scholar
8Powell, R. C., Tomasch, G. A., Kim, Y. W., Thorton, J. A., and Greene, J. E., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 525.Google Scholar
9Strife, S., Ruan, J., Li, Z., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J., and Morkoç, H., J. Vac. Sci. Technol. B 9 (4), 1924 (1991).CrossRefGoogle Scholar
10Lei, T., Moustakas, T. D., Graham, R. J., He, Y., and Berkowitz, S. J., J. Appl. Phys. 71 (10), 4933 (1992).CrossRefGoogle Scholar
11Sitar, Z., Paisley, M. J., Yan, B., and Davis, R. F., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 537.Google Scholar
12Lei, T., Ludwig, K. F., and Moustakas, T. D., J. Appl. Phys. 74 (7), 4430 (1993).CrossRefGoogle Scholar
13Mitchell, T. E., Pirouz, P., and Heuer, A. H., Microbeam Analysis, edited by Geiss, R. H. (San Francisco Press, San Francisco, CA, 1987), p. 215.Google Scholar
14Georgakilas, A., Stoemenos, J., Tsagaraki, K., Komninou, Ph., Flevaris, N., Panayotatos, P., and Christou, A., J. Mater. Res. 8, 1908 (1993).CrossRefGoogle Scholar
15Davis, R. F., Palmour, J. W., and Edmond, J. A., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 463.Google Scholar
16Pirouz, P. and Yang, Y., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 173.Google Scholar
17Lei, T. and Moustakas, T. D., in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), p. 433.Google Scholar
18Strite, S., Chandrasekhar, D., Smith, D. J., Sariel, J., Chen, H., Teraguchi, N., and Morko, H.ç, J. Cryst. Growth 127, 204 (1993).CrossRefGoogle Scholar
19Ogbuji, L. U., Mitchell, T. E., Heuer, A. H., and Shinozaki, S., J. Am. Ceram. Soc. 64 (2), 100 (1981).CrossRefGoogle Scholar
20Lee, K. H., Stevenson, D. A., and Deal, M. D., J. Appl. Phys. 68 (8), 4008 (1990).CrossRefGoogle Scholar
21Greene, J. E., J. Vac. Sci. Technol. B 1 (2), 229 (1993).CrossRefGoogle Scholar
22Fanciulli, M., Lei, T., and Moustakas, T. D., Phys. Rev. B 48 (20), 1993.Google Scholar
23Lei, T. and Moustakas, T. D., unpublished research.Google Scholar
24Hong, H. S., Jiang, B. L., Glass, J. T., Rozgonyi, G. A., and More, K. L., J. Appl. Phys. 63 (8), 2645 (1988).Google Scholar
25Basu, S. N., Das Chowdhury, K., and Moustakas, T. D., unpublished research.Google Scholar
26Balluffi, R. W., Brokman, A., and King, A. H., Acta Metall. 30, 1453 (1982).CrossRefGoogle Scholar