Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-27T15:03:40.820Z Has data issue: false hasContentIssue false

Microstructure evolution of Zr2Al3C4 in Cu matrix

Published online by Cambridge University Press:  11 February 2011

J. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

Interfacial reaction and microstructure evolution in a Zr2Al3C4 reinforced Cu composite were studied by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Decomposition of Zr2Al3C4 was triggered by the deintercalation of Al atoms. In the initial reaction stage, depletion of Al occurred locally. ZrC and Cu platelets as well as thin twinned ZrC slices were observed inside the Zr2Al3C4 grains. In the later reaction stage, all Al atoms depleted from Zr2Al3C4 and were dissolute into the Cu matrix. The final reaction products were a Cu–Al solid solution, ZrC0.5, and highly disordered graphite, which resulted in large volume shrinkage. These experimental results provided a baseline for controlling interfacial reaction and microstructure development in Cu/Zr2Al3C4-based particle-reinforced Cu composites for optimized mechanical and electrical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kaczmar, J.W., Pirtrzak, K., and Wlosinski, W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58 (2000).CrossRefGoogle Scholar
2.Li, L., Wong, Y.S., Fuh, J.Y.H., and Lu, L.: Effect of TiC in copper–tungsten electrodes on EDM performance. J. Mater. Process. Technol. 113, 563 (2001).CrossRefGoogle Scholar
3.Tjong, S.C. and Lau, K.C.: Tribological behaviour of SiC particle-reinforced copper matrix composites. Mater. Lett. 43, 274 (2000).CrossRefGoogle Scholar
4.Shu, K.M. and Tu, G.C.: The microstructure and the thermal expansion characteristics of Cu/SiCp composites. Mater. Sci. Eng., A 349, 236 (2003).CrossRefGoogle Scholar
5.Moustafa, S.F., Abdel-Hamid, Z., and Abd-Elhay, A.M.: Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique. Mater. Lett. 53, 244 (2002).CrossRefGoogle Scholar
6.Tjong, S.C. and Lau, K.C.: Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Mater. Sci. Eng., A 282, 183 (2000).CrossRefGoogle Scholar
7.Schuster, J.C. and Nowotny, H.: Investigations of the ternary systems (Zr, Hf, Nb, Ta)–Al–C. Z. Metallkd. 71, 341 (1980).Google Scholar
8.Tzenov, N.T. and Barsoum, M.W.: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 (2000).CrossRefGoogle Scholar
9.Wang, X.H. and Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in situ hot pressing process. Acta Mater. 50, 3143 (2000).CrossRefGoogle Scholar
10.Peng, L.M.: Fabrication and properties of Ti3AlC2 particulates reinforced copper composites. Scr. Mater. 56, 729 (2007).CrossRefGoogle Scholar
11.Zhang, J. and Zhou, Y.C.: Microstructure, mechanical, and electrical properties of Cu–Ti3AlC2 and in situ Cu–TiCx composites. J. Mater. Res. 23, 924 (2008).CrossRefGoogle Scholar
12.Zhang, Y., Sun, Z.M., and Zhou, Y.C.: Cu/Ti3SiC2 composite: A new electrofriction material. Mater. Res. Innovations 3, 80 (1999).CrossRefGoogle Scholar
13.Wang, J.Y., Zhou, Y.C., Liao, T., and Lin, Z.J.: Trend in crystal structure of layered ternary T–Al–C carbides (T = Sc, Ti, Cr, Zr, Nb, Mo, Hf, W, and Ta). J. Mater. Res. 22, 2685 (2007).CrossRefGoogle Scholar
14.Wang, J.Y. and Zhou, Y.C.: Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39, 10 (2009).CrossRefGoogle Scholar
15.Gesing, T.M. and Jeitschko, M.: The crystal structures of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structures of U2Al3C4 and Al4C3. J. Solid State Chem. 140, 396 (1998).CrossRefGoogle Scholar
16.Fukuda, K., Mori, S., and Hashimoto, S.: Crystal structure of Zr2Al3C4. J. Am. Ceram. Soc. 88, 3528 (2005).CrossRefGoogle Scholar
17.He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S., and Zhou, Y.C.: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 (2007).CrossRefGoogle Scholar
18.He, L.F., Zhong, H.B., Xu, J.J., Li, M.S., Bao, Y.W., Wang, J.Y., and Zhou, Y.C.: Ultrahigh-temperature oxidation of Zr2Al3C4 via rapid induction heating. Scr. Mater. 60, 547 (2009).CrossRefGoogle Scholar
19.Zhang, J., He, L.F., and Zhou, Y.C.: Highly conductive and strengthened copper matrix composite reinforced by Zr2Al3C4 particulates. Scr. Mater. 60, 976 (2009).CrossRefGoogle Scholar
20.Zhang, J., Wang, J.Y., and Zhou, Y.C.: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites. Acta Mater. 55, 4381 (2007).CrossRefGoogle Scholar
21.Suganuma, K., Miyamoto, Y., and Koizumi, M.: Joining of ceramics and metals. Annu. Rev. Mater. Sci. 18, 47 (1988).CrossRefGoogle Scholar
22.Asthana, R. and Singh, M.: Joining of partially sintered alumina to alumina, titanium, Hastealloy and C–SiC composite using Ag–Cu brazes. J. Eur. Ceram. Soc. 28, 617 (2008).CrossRefGoogle Scholar
23.Asthana, R. and Singh, M.: Joining of ZrB2-based ultra-high-temperature ceramic composites using Pd-based braze alloys. Scr. Mater. 61, 257 (2009).CrossRefGoogle Scholar
24.Avishai, A., Scheu, C., and Kaplan, W.D.: Intergranular films at metal–ceramic interfaces: Part I—Interface structure and chemistry. Acta Mater. 53, 1559 (2005).CrossRefGoogle Scholar
25.Obinata, I. and Wassermann, G.: X-ray analysis of the solubility of aluminum in copper. Naturwiss. 21, 382 (1933).CrossRefGoogle Scholar
26.Bradley, A.J. and Goldschmidt, H.J.: An x-ray study of slowly cooled iron-copper-aluminium alloys—Part I. Alloys rich in iron and copper. J. Inst. Met. 65, 389 (1939).Google Scholar
27.Pradhan, S.K. and De, M.: An x-ray determination of the thermal expansion of α-phase Cu–Al alloys at high temperature. J. Appl. Crystallogr. 21, 980 (1988).CrossRefGoogle Scholar
28.Ozoliņš, V. and Häglund, J.: First-principles study of effective cluster interactions and enthalpies of formation of substoichiometric VC1–x. Phys. Rev. B 48, 5069 (1993).CrossRefGoogle ScholarPubMed
29.Korahavyi, P.A., Pourovokii, L.V., Hugoosson, H.W., Ruban, A.V., and Johansson, B.: Ab initio study of phase equilibria in TiCx. Phys. Rev. Lett. 88, 15505 (2002).Google Scholar
30.Hugoosson, H.W., Eriksson, O., Jansson, U., and Johansson, B.: Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001).CrossRefGoogle Scholar
31.Samsonov, G.V., Koval’chenko, M.S., Petrykina, R.Ya., and Naumenko, V.Ya.: Hot pressing of the transition metals and their carbides in their homogenity regions. Powder Metall. Met. Ceram. 9, 713 (1970).CrossRefGoogle Scholar
32.Sara, R.V.: The system zirconium-carbon. J. Am. Ceram. Soc. 48, 243 (1965).CrossRefGoogle Scholar
33.Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
34.Wu, L., He, L.F., Bao, Y.W., and Zhou, Y.C.: Tribological properties of a Zr2Al3C4 ceramic at ambient temperature. J. Am. Ceram. Soc. 92, 141 (2009).CrossRefGoogle Scholar
35.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 (2002).CrossRefGoogle Scholar
36.Tuinstra, F. and Koening, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
37.Parthé, E. and Chabot, B.: Zr2Al3C5–x and Hf2Al3C5–x described with higher symmetrical space group P63/ mmc. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 44, 774 (1988).CrossRefGoogle Scholar
38.Lin, Z.J., Zhuo, M.J., He, L.F., Zhou, Y.C., Li, M.S., and Wang, J.Y.: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5. Acta Mater. 54, 3843 (2006).CrossRefGoogle Scholar
39.Binford, J.S. Jr., Strohmenger, J.M., and Hebert, T.H.: A modified drop calorimeter. The heat content of aluminum carbide and cobalt (II) fluoride above 25°. J. Phys. Chem. 71, 2404 (1967).CrossRefGoogle Scholar
40.Schuster, J.C.: A reinvestigation of the thermal decomposition of aluminum carbide and the constitution of the Al–C system. J. Phase Equilib. 12, 546 (1991).CrossRefGoogle Scholar
41.Qiu, C. and Metselaar, R.: Solubility of carbon in liquid Al and stability of Al4C3. J. Alloys Compd. 216, 55 (1994).CrossRefGoogle Scholar
42.Wang, J.Y., Zhou, Y.C., Lin, Z.J., and Liao, T.: First-principle investigation on chemical bonding and bulk modulus of the ternary carbide Zr2Al3C5. Phys. Rev. B 72, 052102 (2005).CrossRefGoogle Scholar
43.Wang, J.Y., Zhou, Y.C., Lin, Z.J., Liao, T., and He, L.F.: First-principles prediction of the mechanical properties and electronic structure of ternary aluminum carbide Zr3Al3C5. Phys. Rev. B 73, 134107 (2006).CrossRefGoogle Scholar
44.Liao, T., Wang, J.Y., and Zhou, Y.C.: Atomistic deformation modes and intrinsic brittleness of Al4SiC4: A first-principles investigation. Phys. Rev. B 74, 174112 (2006).CrossRefGoogle Scholar
45.Rühle, M.: Structure and composition of metal/ceramic interfaces. J. Eur. Ceram. Soc. 16, 353 (1996).CrossRefGoogle Scholar
46.Zhang, H., Ramesh, K.T., and Chin, E.S.C.: Effects of interfacial debonding on the rate-dependent response of metal matrix composites. Acta Mater. 53, 4687 (2005).CrossRefGoogle Scholar
47.Romanova, V.A., Balokhonov, R.R., and Schmauder, S.: The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite. Acta Mater. 57, 97 (2009).CrossRefGoogle Scholar
48.Zhou, Y.C., Wang, X.H., Sun, Z.M., and Chen, S.Q.: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 (2001).CrossRefGoogle Scholar
49.Music, D. and Schneider, J.M.: The correlation between the electronic structure and elastic properties of nanolaminates. JOM 59, 60 (2007).CrossRefGoogle Scholar
50.Wang, J.Y., Zhou, Y.C., Liao, T., Zhang, J., and Lin, Z.J.: A first-principle investigation of the phase stability of Ti2AlC with Al vacancies. Scr. Mater. 58, 227 (2008).CrossRefGoogle Scholar
51.Kováčik, J. and Bielek, J.: Electrical conductivity of Cu/graphite composite material as a function of structural characteristics. Scr. Mater. 35, 151 (1996).CrossRefGoogle Scholar
52.Yeoh, A., Persad, J., and Eliezer, Z.: Dimensional response of copper-graphite powder composites to sintering. Scr. Mater. 37, 271 (1996).CrossRefGoogle Scholar