Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:56:02.744Z Has data issue: false hasContentIssue false

A micromechanistic model of the combustion synthesis process: Part I. Theoretical development

Published online by Cambridge University Press:  03 March 2011

Yangsheng Zhang
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

A theoretical model of the combustion synthesis process has been developed. In particular, a set of nonlinear and interrelated partial differential equations is given that accounts for all of the relevant physical and chemical processes that occur during the combustion synthesis process. The appropriate conservation equations for thermal energy, mass, and momentum densities are correctly described—for each phase at each point in the sample—at all times during the process. In addition, details of the necessary interphase transfer terms are expressed in a number of constitutive relationships, in which the dependence of an independent variable upon its dependent variable(s) is given explicitly. In doing so, microstructural details are accounted for, derived primarily from percolation concepts as applied to disordered porous media. All assumptions that are incorporated into the theoretical model have been tabulated in detail. This theoretical model establishes an approach to the development of a sound, quantitative, and fundamental understanding of the combustion synthesis process, particularly with respect to the processing-microstructure-properties relationship. It also provides a point of departure for conducting detailed, quantitative computer experiments of the combustion synthesis process.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ray, S., J. Mater. Sci. 28, 53975413 (1993).CrossRefGoogle Scholar
2Ravi, K. V., Mater. Sci. Eng. B 19, 203227 (1993).CrossRefGoogle Scholar
3Varma, A. and Lebrat, J-P., Chem. Eng. Sci. 47, 21792194 (1992).CrossRefGoogle Scholar
4Messing, G. L., Zhang, S-C., and Jayanthi, G. V., J. Am. Ceram. Soc. 76, 27072726 (1993).CrossRefGoogle Scholar
5Wiley, J. B. and Kaner, R. B., Science 255, 10931097 (1992).CrossRefGoogle Scholar
6Rice, R. W., AIChE J 36, 481510 (1990).CrossRefGoogle Scholar
7Wada, H. and Odawara, O., J. Mater. Syn. Proc. 1, 121124 (1993).Google Scholar
8Belhadjhamida, A., Johnson, J. L., Tandon, R., and German, R. M., J. Mater. Syn. Proc. 1, 275285 (1993).Google Scholar
9Pratsinis, S. E. and Mastrangelo, S. V. R., Chem. Eng. Prog., 6266 (May, 1989).Google Scholar
10Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Lett. 3, 279365 (1989).Google Scholar
11Treece, R. E., Gillan, E. G., Jacubinas, R. M., Wiley, J. B., and Kaner, R. B., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J., (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 169.Google Scholar
12Hydrothermal Reactions for Materials Science and Engineering: An Overview of Research in Japan, edited by Sōmiya, S. (Elsevier, New York, 1989).Google Scholar
13Young, R. M. and Pfender, E., Plasma Chem. Plasma Proc. 5, 137 (1985).CrossRefGoogle Scholar
14Graham, R. A., Morosin, B., Venturini, E. L., and Carr, M. J., Annu. Rev. Mater. Sci. 16, 315341 (1986).CrossRefGoogle Scholar
15Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990).Google Scholar
16Proceedings of the First U. S.-Japanese Workshop on Combustion Synthesis, edited by Kaieda, Y. and Holt, J. B. (Tsukuba Science City, Ibaraki, Japan, 1990).Google Scholar
17Merzhanov, A. G., Keynote Talk presented at the International Symposium on Combustion and Plasma Synthesis of High-Temperature Materials, San Francisco, CA, October 23–26, 1988.Google Scholar
18Koizumi, M. and Miyamoto, Y., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990), pp. 5460.Google Scholar
19Kaieda, Y., Otaguchi, M., and Oguro, N., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990), pp. 106113.Google Scholar
20McCauley, J. W., Ceram. Eng. Sci. Proa, 11 (9–10), 11371181 (1990).CrossRefGoogle Scholar
21Munir, Z. A., Am. Ceram. Soc. Bull. 67 (2), 342349 (1988).Google Scholar
22Munir, Z. A. and Holt, J. B., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987).Google Scholar
23Behrens, R. G. and Hansen, G. P., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987), pp. 177200.Google Scholar
24Behrens, R. G. and Brush, H. T., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987), pp. 415428.Google Scholar
25Puszynski, J., Degreve, J., and Hlavacek, V., Ind. Eng. Chem. Res. 26, 14241434 (1987).CrossRefGoogle Scholar
26Armstrong, R. and Koszykowski, M., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990), pp. 8899.Google Scholar
27Booty, M. R., Matkowski, B. J., and Margolis, S. B., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987), pp. 235246.Google Scholar
28Song, I. and Thadhani, N. N., Metall. Trans. A 23, 4148 (1992).CrossRefGoogle Scholar
29LaSalvia, J. C., Meyer, L. W., and Meyers, M. A., J. Am. Ceram. Soc. 75 (3), 592602 (1992).Google Scholar
30Hoke, D. A., Meyers, M. A., Meyer, L. W., and Gray, G. T. III, Metall. Trans. A 23, 7786 (1992).CrossRefGoogle Scholar
31Vecchio, K. S., LaSalvia, J. C., Meyers, M. A., and Gray, G. T. III, Metall. Trans. A 23, 8797 (1992).CrossRefGoogle Scholar
32Kecskes, L. J., Kottke, T., Netherwood, P. H. Jr., Benck, R. F., and Niiler, A., Ballistic Research Laboratory Report BRL-TR-3133 (1990).Google Scholar
33Coy, M. A., M. S. Thesis, Alfred University, Alfred, NY (1993).Google Scholar
34Odawara, O. and Ikeuchi, J., J. Am. Ceram. Soc. 69 (4), C80C81 (1986).Google Scholar
35Odawara, O., Int. J. Self-Propagating High-Temperature Synthesis 1, 160167 (1992).Google Scholar
36Odawara, O., personal communication (1993).Google Scholar
37Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Syn. Proc. 1, 93100 (1993).Google Scholar
38Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992).Google Scholar
39Zhou, Z. and Stangle, G. C., J. Mater. Sci. (1994, in press).Google Scholar
40Stangle, G. C. and Zhang, Y., unpublished research.Google Scholar
41Stangle, G. C. and Zhang, Y., unpublished research.Google Scholar
42Stangle, G. C. and Zhang, Y., unpublished research.Google Scholar
43Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 26052619 (1994).CrossRefGoogle Scholar
44He, C., Ph.D. Dissertation, Alfred University, Alfred, NY (in progress).Google Scholar
45van Brakel, J., Powder Technol. 11, 205236 (1975).CrossRefGoogle Scholar
46Scheidegger, A. E., J. Appl. Phys. 25, 994 (1954); as quoted in Ref. 45.CrossRefGoogle Scholar
47Mohanty, K. K., Ottino, J. M., and Davis, H. T., Chem. Eng. Sci. 37, 905924 (1982).CrossRefGoogle Scholar
48Reyes, S. and Jensen, K. F., Chem. Eng. Sci. 40, 17231734 (1985).CrossRefGoogle Scholar
49Stinchcombe, R. B., J. Phys. C: Solid State Phys. 7, 179203 (1974).CrossRefGoogle Scholar
50Reyes, S. and Jensen, K. F., Chem. Eng. Sci. 41, 333343 (1986).CrossRefGoogle Scholar
51Reyes, S. and Jensen, K. F., Chem. Eng. Sci. 41, 345354 (1986).CrossRefGoogle Scholar
52Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
53Ramakrishnan, T. S. and Wasan, D. T., Powder Technol. 48, 99124 (1986).Google Scholar
54Batchelor, G. K. and O'Brien, R. W., Proc. R. Soc. London A 355, 313333 (1977).Google Scholar
55Ridgeway, K. and Tarbuk, K. J., Br. Chem. Eng. 12, 384388 (1967).Google Scholar
56Viskanta, R. and Anderson, E. E., Adv. Heat Transfer 11, 317441 (1975).CrossRefGoogle Scholar
57Goedecke, G. H., J. Opt. Soc. Am. 67, 13391348 (1977).CrossRefGoogle Scholar
58Wang, K. Y. and Tien, C. L., J. Quant. Spectrosc. Radiat. Transfer 30, 213223 (1983).CrossRefGoogle Scholar
59Drolen, B. L. and Tien, C. L., J. Thermophysics 1, 6368 (1987).CrossRefGoogle Scholar
60Flamant, G., Menigault, T., and Schwander, D., J. Heat Transfer 110, 463467 (1988).CrossRefGoogle Scholar
61Viskanta, R. and Menguc, M. P., Appl. Mech. Rev. 42, 241259 (1989).Google Scholar
62Flow Through Porous Media, edited by DeWiest, R. J. M. (Academic Press, New York, 1969).Google Scholar
63Model, M. and Reid, R. C., Thermodynamics and Its Applications (Prentice-Hall, Englewood Cliffs, NJ, 1974).Google Scholar
64Skelland, A. H. P., Diffusional Mass Transfer (John Wiley & Sons, New York, 1974).Google Scholar
65Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena (John Wiley & Sons, New York, 1960).Google Scholar
66Cussler, E. L., Mass Transfer (McGraw-Hill, New York, 1988).Google Scholar
67Biot, M. A. and Willis, D. G., J. Appl. Mech. 24, 594601 (1957).CrossRefGoogle Scholar
68Goodman, M. A. and Cowin, S. C., Arch. Rational Mech. Anal. 44, 249266 (1972).CrossRefGoogle Scholar
69Drumheller, D. S., Int. J. Solids Structures 14, 441456 (1978).CrossRefGoogle Scholar
70Ahmadi, G. and Sohrabpour, S., Int. J. Solids Structures 14, 131142 (1978).Google Scholar
71Ahmadi, G., Scientia Sinica 24, 179188 (1981).Google Scholar
72Ahmadi, G., Int. J. Non-Linear Mechanics 17, 2133 (1982).CrossRefGoogle Scholar
73Swedlow, J. L., Int. J. Non-Linear Mechanics 3, 325335 (1968).CrossRefGoogle Scholar
74Carroll, M. and Holt, A. C., J. Appl. Phys. 43, 759761 (1972).Google Scholar
75Morland, L. W., J. Geophys. Res. 77, 890900 (1972).CrossRefGoogle Scholar
76Guo, R. M. and Swedlow, J. L., Int. J. Non-Linear Mechanics 18, 321334 (1983).CrossRefGoogle Scholar
77Doraivelu, S. M., Gegel, H. L., Gunasekera, J. S., Malas, J. C., and Morgan, J. T., Int. J. Mech. Sci. 26, 527535 (1984).CrossRefGoogle Scholar
78Nohara, A., Nakagawa, T., Soh, T., and Shinke, T., Int. J. Numer. Meth. Eng. 25, 213225 (1988).CrossRefGoogle Scholar
79Wang, P. T., Powder Technol. 54, 107118 (1988).CrossRefGoogle Scholar
80Lee, Y. K., Int. J. Plasticity 4, 301316 (1988).CrossRefGoogle Scholar
81Jenkins, J. T., J. Appl. Mech. 42, 603606 (1975).CrossRefGoogle Scholar