Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T01:11:26.624Z Has data issue: false hasContentIssue false

Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries

Published online by Cambridge University Press:  19 October 2016

Sangwook Kim
Affiliation:
Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC27695
Hsiao-Ying Shadow Huang*
Affiliation:
Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC27695
*
a)Address all correspondence to this author. e-mail: hshuang@ncsu.edu
Get access

Abstract

Experimental studies have shown capacity loss and impedance rise on the surfaces of cathode particles during (dis)charging in lithium-ion batteries. However, there are surprisingly few studies focusing on the cathode–electrolyte interface. The current study uses multiphysics finite element models to understand fluid–structure interactions in a half-cell battery system. Effects of C-rate, particle sizes, lithiation, and phase transformation of the cathode at the interface are investigated. Results demonstrate that doubling the particle size results in larger available lithium intercalation areas, giving rise to increased tension 1.40 times and compression 1.82 times at the interface. Moreover, higher C-rate with high lithium-ion concentration gradient results in higher mechanical stresses at the interface. These coupling factors are strongly related to the experimentally observed battery degradation. Our simulations demonstrate that both electrode and electrolyte have pronounced effects when investigating mechanical stresses at the electrode–electrolyte interface.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chiang, Y-M.: Building a better battery. Science 330, 1485 (2010).Google Scholar
Kang, B. and Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).CrossRefGoogle ScholarPubMed
Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D.: Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. In IBA—HBC 2006 Selected Papers from the International Battery Association & Hawaii Battery Conference 2006, Vol. 165, Waikoloa, Hawaii, USA, 2007; p. 491.Google Scholar
Aurbach, D., Talyosef, Y., Markovsky, B., Markevich, E., Zinigrad, E., Asraf, L., Gnanaraj, J.S., and Kim, H.J.: Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta 50, 247 (2004).Google Scholar
Ju, H., Wu, J., and Xu, Y.H.: Revisiting the electrochemical impedance behaviour of the LiFePO4/C cathode. J. Chem. Sci. 125, 687 (2013).Google Scholar
Strobridge, F.C., Orvananos, B., Croft, M., Yu, H.C., Robert, R., Liu, H., Zhong, Z., Connolley, T., Drakopoulos, M., Thornton, K., and Grey, C.P.: Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery. Chem. Mater. 27, 2374 (2015).Google Scholar
Deshpande, R., Cheng, Y.T., Verbrugge, M.W., and Timmons, A.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158, A718 (2011).Google Scholar
ChiuHuang, C.K. and Huang, H.Y.S.: Stress evolution on the phase boundary in LiFePO4 particles. J. Electrochem. Soc. 160, A2184 (2013).Google Scholar
Stamps, M., Eischen, J.W., and Huang, H.-Y.S.: Particle- and Crack-Size Dependency of Lithium-ion Battery Materials LiFePO4 . AIMS Mater. Sci. 3(1), 190 (2016).Google Scholar
Huang, H.-Y.S. and Wang, Y.-X.: Dislocation Based Stress Developments in Lithium-Ion Batteries. J. Electrochem. Soc. 159(6), A815 (2012).CrossRefGoogle Scholar
Cheng, Y-T. and Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508 (2010).Google Scholar
Cheng, Y.T. and Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008).Google Scholar
Cheng, Y.T. and Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453 (2009).Google Scholar
Deshpande, R., Cheng, Y.T., and Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081 (2010).Google Scholar
Deshpande, R., Qi, Y., and Cheng, Y.T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157, A967 (2010).Google Scholar
Deshpande, R., Verbrugge, M., Cheng, Y.T., Wang, J., and Liu, P.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).Google Scholar
Park, J., Lu, W., and Sastry, A.M.: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201 (2011).Google Scholar
Park, M., Zhang, X., Chung, M., Less, G.B., and Sastry, A.M.: A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904 (2010).Google Scholar
Zhang, X., Sastry, A.M., and Shyy, W.: Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542 (2008).Google Scholar
Zhang, X., Shyy, W., and Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).Google Scholar
Zhang, Z.: High Voltage Electrolyte for Lithium Batteries (Argonne National Laboratory Presentation, Washington, DC, 2012).Google Scholar
Christensen, J. and Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019 (2006).Google Scholar
Christensen, J. and Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293 (2006).Google Scholar
Zhu, M., Park, J., and Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: A simulation study. J. Electrochem. Soc. 159, A492 (2012).CrossRefGoogle Scholar
Renganathan, S., Sikha, G., Santhanagopalan, S., and White, R.E.: Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 157, A155 (2010).Google Scholar
Renganathan, S. and White, R.E.: Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient. J. Power Sources 196, 442 (2011).Google Scholar
Chen, G., Song, X., and Richardson, T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006).Google Scholar
Nishimura, S-i., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A.: Experimental visualization of lithium diffusion in Li x FePO4 . Nat. Mater. 7, 707 (2008).Google Scholar
Yamada, A., Koizumi, H., Nishimura, S-i., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., and Kobayashi, Y.: Room-temperature miscibility gap in Li x FePO4 . Nat. Mater. 5, 360 (2006).Google Scholar
Yamada, A., Koizumi, H., Sonoyama, N., and Kanno, R.: Phase change in Li x FePO4 . Electrochem. Solid-State Lett. 8, A409 (2005).Google Scholar
ChiuHuang, C-K. and Huang, H-Y.S.: A diffusion model in a two-phase interfacial zone for nanoscale lithium-ion battery materials. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME International, Houston, 2012); p. 1231.Google Scholar
ChiuHuang, C-K., Zhou, C., and Shadow Huang, H-Y.: In situ imaging of lithium-ion batteries via the secondary ion mass spectrometry. J. Nanotechnol. Eng. Med. 5, 021002 (2014).Google Scholar
Srinivasan, V. and Newman, J.: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517 (2004).Google Scholar
ChiuHuang, C.K. and Huang, H-Y.S.: Critical lithiation for C-rate dependent mechanical stresses in LiFePO4 . J. Solid State Electrochem. 19, 2245 (2015).Google Scholar
Sauvage, F., Baudrin, E., Morcrette, M., and Tarascon, J.M.: Pulsed laser deposition and electrochemical properties of LiFePO4 thin films. Electrochem. Solid-State Lett. 7, A15 (2004).CrossRefGoogle Scholar
Brunetti, G., Robert, D., Bayle-Guillemaud, P., Rouviere, J.L., Rauch, E.F., Martin, J.F., Colin, J.F., Bertin, F., and Cayron, C.: Confirmation of the Domino-Cascade model by LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515 (2011).Google Scholar
Christensen, J.: Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157, A366 (2010).Google Scholar
Li, Y.Y., El Gabaly, F., Ferguson, T.R., Smith, R.B., Bartelt, N.C., Sugar, J.D., Fenton, K.R., Cogswell, D.A., Kilcoyne, A.L.D., Tyliszczak, T., Bazant, M.Z., and Chueh, W.C.: Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149 (2014).Google Scholar
Valoen, L.O. and Reimers, J.N.: Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152, A882 (2005).Google Scholar
Nazri, G.A. and Pistoia, G., eds.: Lithium Batteries: Science and Technologies (Springer, New York, 2009); pp. 509529.Google Scholar
Nagpure, S.C., Downing, R.G., Bhushan, B., Babu, S.S., and Cao, L.: Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochim. Acta 56, 4735 (2011).Google Scholar
Hayamizu, K.: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate plus diethyl carbonate binary solutions of LiPF6 studied by NMR. J. Chem. Eng. Data 57, 2012 (2012).Google Scholar
Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., and Antipov, E.V.: Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939 (2010).Google Scholar
Liu, Q., He, H., Li, Z.F., Liu, Y.D., Ren, Y., Lu, W.Q., Lu, J., Stach, E.A., and Xie, J.: Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells. ACS Appl. Mater. Interfaces 6, 3282 (2014).Google Scholar
Maxisch, T. and Ceder, G.: Elastic properties of olivine Li x FePO4 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 174112 (2006).Google Scholar
Tang, M., Belak, J.F., and Dorr, M.R.: Anisotropic phase boundary morphology in nanoscale olivine electrode particles. J. Phys. Chem. C 115, 4922 (2011).Google Scholar
Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., and Tarascon, J.M.: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006).CrossRefGoogle Scholar
Guduru, A., Northrop, P.W.C., Jain, S., Crothers, A.C., Marchant, T.R., and Subramanian, V.R.: Analytical solution for electrolyte concentration distribution in lithium-ion batteries. J. Appl. Electrochem. 42, 189 (2012).Google Scholar
Wang, Y.G., Wang, Y.R., Hosono, E.J., Wang, K.X., and Zhou, H.S.: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 47, 7461 (2008).Google Scholar
Zhang, X.D., Hou, Y.K., He, W., Yang, G.H., Cui, J.J., Liu, S.K., Song, X., and Huang, Z.: Fabricating high performance lithium-ion batteries using bionanotechnology. Nanoscale 7, 3356 (2015).Google Scholar
Li, J.C., Zhang, Q.L., Xiao, X.C., Cheng, Y.T., Liang, C.D., and Dudney, N.J.: Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J. Am. Chem. Soc. 137, 13732 (2015).Google Scholar
Lim, C., Yan, B., Yin, L.L., and Zhu, L.K.: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279 (2012).Google Scholar
Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T., and Yamada, A.: Isolation of solid solution phases in size-controlled Li x FePO4 at room temperature. Adv. Funct. Mater. 19, 395 (2009).Google Scholar