Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T09:32:32.643Z Has data issue: false hasContentIssue false

Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation

Published online by Cambridge University Press:  23 January 2012

Carsten Schilde*
Affiliation:
Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany
Arno Kwade
Affiliation:
Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany
*
a)Address all correspondence to this author. e-mail: c.schilde@tu-bs.de
Get access

Abstract

Depending on the application of nanoparticles, certain characteristics of the product quality such as size, morphology, abrasion resistance, specific surface, and tendency to agglomeration are important. These characteristics are a function of the physicochemical properties of the nanostructured material and, thus, of the process parameters of the particle synthesis. Because of econimical reasons in large-scale production such as pyrolysis or precipitation processes, nanosized particles are produced not as single primary particles but rather as aggregates or agglomerates. The application properties of these aggregates are strongly affected by the micromechanical properties, which can be measured via nanoindentation. In this study, a flat punch method was used. For the measurements, model aggregates out of sol–gel produced silica with varying primary particle size and strength of solid bonds were used. Generally, the micromechanical properties can be characterized by measuring the micromechanical properties via nanoindentation and be described by different theoretical models.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Winkler, J.: Nanopigmente dispergieren. Farbe und Lack 2, 35 (2006).Google Scholar
2.Schilde, C., Breitung-Faes, S., and Kwade, A.: Dispersing and grinding of alumina nano particles by different stress mechanisms. Ceram. Forum Int. 84, 12 (2007).Google Scholar
3.Kendall, K. and Weihs, T.P.: Adhesion of nanoparticles within spray dried agglomerates. Appl. Phys. (Berl.) 25, 3 (1992).Google Scholar
4.Raichman, Y., Kazakevich, M., Rabkin, E., and Tsur, Y.: Inter-nanoparticle bonds in agglomerates studied by nanoindentation. Adv. Mater. 18, 2028 (2006).CrossRefGoogle Scholar
5.Adams, M.J., Akram, A., Briscoe, B.J., Lawrence, C., and Parsonage, D.: Nanoindentation of particulate coatings. J. Mater. Res. 14, 2344 (1999).CrossRefGoogle Scholar
6.Perrey, C.R., Mook, W.M., Carter, C.B., and Gerberich, W.W.: Characterization of mechanical deformation of nanoscale volumes, in Nanomaterials for Structural Applications, edited by Berndt, C.C., Fischer, T.E., Ovid’ko, I., Skandan, G., and Tsakalakos, T. (Mater. Res. Soc. Symp. Proc. 740, Warrendale, PA, 2003), I3.13, p. 87.Google Scholar
7.Gerberich, W.W., Mook, W.M., Cordill, M., Jungk, J., Boyce, B., Friedmann, T., Moody, N., and Yang, D.: Nanoprobing fracture length scales. Adv. Fract. Res. 138, 75 (2006).CrossRefGoogle Scholar
8.Mook, W.M., Nowak, J.D., Perrey, C.R., Carter, C.B., Mukherjee, R., Girshick, S.L., Mcmurry, P.H., and Gerberich, W.W.: Compressive stress effects on nanoparticle modulus and fracture. Phys. Rev. B 75, 214112 (2007).CrossRefGoogle Scholar
9.Roth, M., Schilde, C., Lellig, P., Kwade, A., and Auerhammer, G.K.: Colloidal aggregates tested via nanoindentation and simultaneous 3D imaging. Stat. Mech. (2011, in press).Google Scholar
10.Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
11.Gellermann, C., Ballweg, T., and Wolter, H.: Herstellung von funktionalisierten oxidischen Nano- und Mikropartikeln und deren Verwendung. Chemie Ingenieur Technik 79, 233 (2007).CrossRefGoogle Scholar
12.Arfsten, J., Bradtmöller, C., Kampen, I., and Kwade, A.: Compressive testing of single yeast cells in liquid environment using a nanoindentation system. J. Mater. Res. 23, 3153 (2008).CrossRefGoogle Scholar
13.Antonyuk, S., Tomas, J., Heinrich, S., and Mörl, L.: Breakage behavior of spherical granulates by compression. Chem. Eng. Sci. 60, 4031 (2005).CrossRefGoogle Scholar
14.Balakrishnan, A., Pizette, P., Martin, C.L., Joshi, S.V., and Saha, B.P.: Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 58, 802 (2010).CrossRefGoogle Scholar
15.Bartali, R., Micheli, V., Gottardi, A., and Laidani, N.: Nanoindentation: Unload-to-load work ratio analysis in amorphous carbon films for mechanical properties. Surf. Coat. Tech. 204, 2073 (2010).CrossRefGoogle Scholar
16.Malzbender, J. and De Witt, G.: Indentation load-displacement curve, plastic deformation, and energy. J. Mater. Res. 17, 502 (2002).CrossRefGoogle Scholar
17.Malzbender, J. and De Witt, G.: Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf. Coat. Tech. 135, 60 (2000).CrossRefGoogle Scholar
18.Antonyuk, S., Palis, S., and Heinrich, S.: Breakage behavior of agglomerates and crystals by static loading and impact. Powder Technol. 206, 88 (2010).CrossRefGoogle Scholar
19.Arfsten, J., Kampen, I., and Kwade, A.: Mechanical testing of single yeast cells in liquid environment: Effect of the extracellular osmotic conditions on the failure behavior. Int. J. Mater. Res. 100, 978 (2009).CrossRefGoogle Scholar
20.Schilde, C., Gothsch, T., Quarch, K., Kind, M., and Kwade, A.: Effect of important process parameters on the redispersion process and the micromechanical properties of precipitated silica. Chem. Eng. Technol. 32, 1078 (2009).CrossRefGoogle Scholar
21.Arfsten, J.: Mikromechanische Charakterisierung von Saccharomyces cerevisiae (TU Braunschweig, Braunschweig, 2009).Google Scholar
22.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Int. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
23.Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
24.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
25.Goldsmith, W.: Impact (Edward Arnold, London, 1960).Google Scholar
26.Hertz, H.: Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92, 156 (1881).Google Scholar
27.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).CrossRefGoogle Scholar
28.Rumpf, H.: Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an Kontaktpunkten. Chemie Ingenieur Technik 42, 538 (1970).CrossRefGoogle Scholar
29.Rumpf, H.: Particle adhesion, 2nd Int. Symp. Agglomeration, Atlanta, Conf. Proc., 97, (1977).Google Scholar
30.Bika, D., Tardos, G.I., Panmai, S., Farber, L., and Michaels, J.: Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technol. 150, 104 (2005).CrossRefGoogle Scholar
31.Iler, R.K.: The Chemistry of Silica, New York, 1979).Google Scholar
32.Bond, F.C.: Crushing tests by pressure and impact. Mining technology. Technical Preprint No. 1895, 169, 58 (1946).Google Scholar
33.Vogel, W.P.L.: From single particle impact behavior to modelling of impact mills. Chem. Eng. Sci. 60, 5164 (2005).CrossRefGoogle Scholar
34.Schilde, C., Beinert, S., and Kwade, A.: Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem. Eng. Sci. 66, 4943 (2011).CrossRefGoogle Scholar
35.Cheng, Y-T. and Cheng, C.M.: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
36.Lawn, B.R. and Howes, V.R.: Elastic recovery at hardness indentations. J. Mater. Sci. 16, 2745 (1981).CrossRefGoogle Scholar
37.Mencik, J. and Swain, M.V.: Micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).Google Scholar