Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T10:33:23.489Z Has data issue: false hasContentIssue false

Magnetic and electronic transport properties of nanocomposites of superconducting Mo carbides’ nanoparticles embedded in a ferromagnetic carbon matrix

Published online by Cambridge University Press:  31 January 2011

Zhen H. Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Z.D. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: zhwang@imr.ac.cn
Get access

Abstract

The electronic transport and magnetic properties of nanocomposites, in which nanoparticles of superconducting (SC) molybdenum carbides are embedded in a ferromagnetic (FM) carbon matrix to form a three-dimensional SC-FM network, are studied. The high-resolution transmission electron microscope observation shows that the carbon in the nanocomposites is in both ordered and disordered forms. The magnetic properties of the nanocomposites are ruled by the ferromagnetic carbon matrix. The temperature dependence of electrical resistivity of the nanocomposites is dominated by the carbon matrix, showing the semi-conductivity. The special I-V curves near the zero voltage bias of the nanocomposites are observed at low temperatures, due to the influence of contact barriers between molybdenum carbides and the carbon matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chien, C.L. and Reich, D.H.: Proximity effects in superconducting/magnetic multilayers. J. Magn. Magn. Mater. 200, 83 (1999)CrossRefGoogle Scholar
2Jin, B.Y. and Ketterson, J.B.: Artificial metallic superlattices. Adv. Phys. 38, 189 (1989)Google Scholar
3Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnár, S. von, Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001)Google Scholar
4Baladie, I. and Buzdin, A.: Thermodynamic properties of ferromagnet/ superconductor/ferromagnet nanostructures. Phys. Rev. B 67, 014523 (2003)CrossRefGoogle Scholar
5Gu, J.Y., You, C.Y., Jiang, J.S., Pearson, J., Bazaliy, Ya.B., and Bader, S.D.: Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi. Phys. Rev. Lett. 89, 267001 (2002)CrossRefGoogle ScholarPubMed
6Sefrioui, Z., Arias, D., Pen, V., Villegas, J.E., Varela, M., Prieto, P., Len, C., Martinez, J.L., and Santamaria, J.: Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7-d superlattices. Phys. Rev. B 67, 214511 (2003)CrossRefGoogle Scholar
7Stamopoulos, D., Pissas, M., and Manios, E.: Ferromagnetic-superconducting hybrid films and their possible applications: A direct study in a model combinatorial film. Phys. Rev. B 71, 014522 (2005)CrossRefGoogle Scholar
8Bergeret, F.S., Volkov, A.F., and Efetov, K.B.: Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096 (2001)CrossRefGoogle ScholarPubMed
9Stahn, J., Chakhalian, J., Niedermayer, C., Hoppler, J., Gutberlet, T., Voigt, J., Treubel, F., Habermeier, H.U., Cristiani, G., Keimer, B., and Bernhard, C.: Magnetic proximity effect in perovskite superconductor/ ferromagnet multilayers. Phys. Rev. B 71, 140509(R) (2005).Google Scholar
10Bergeret, F.S., Volkov, A.F., and Efetov, K.B.: Manifestation of triplet superconductivity in superconductor-ferromagnet structures. Phys. Rev. B 68, 064513 (2003)CrossRefGoogle Scholar
11Wang, Z.H., Li, D., Geng, D.Y., Ma, S., Liu, W., and Zhang, Z.D.: The characterizations of superconducting MoC/Mo2C nanocomposites embedded in a magnetic graphite matrix. Phys. Status Solidi A 205, 2919 (2008)CrossRefGoogle Scholar
12Li, D.,Li, W.F., Ma, S., and Zhang, Z.D.: Electronic transport properties of NbC(C)-C nanocomposites. Phys. Rev. B 73, 193402 (2006)CrossRefGoogle Scholar
13Zhang, Z.D., Zheng, J.G., Skorvanek, I., Kovac, J., Yu, J.L., Dong, X.L., Li, Z.J., Jin, S.R., Zhao, X.G., and Liu, W.: Synthesis, characterization, and magnetic properties of carbon and boronoxide-encapsulated iron nanocapsules. J. Nanosci. Nanotechnol. 1, 153 (2001)Google Scholar
14Kopelevich, Y., Esquinazi, P., Torres, J.H.S., and Moehlecke, S.: Ferromagnetic and superconducting-like behavior of graphite. J. Low Temp. Phys. 119, 691 (2000)CrossRefGoogle Scholar
15Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.H., and Butz, T.: Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003)Google Scholar
16Rode, A.V., Gamaly, E.G., Christy, A.G., Fitz, J.G. Gerald, Hyde, S.T., Elliman, R.G., Luther-Davies, B., Veinger, A.I., Androulakis, J., and Giapintzakis, J.: Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 70, 054407 (2004)CrossRefGoogle Scholar
17Mombru, A.W., Pardo, H., Faccio, R., de, O.F. Lima, Leite, E.R., Zanelatto, G., Lanfredi, A.J.C., Cardoso, C.A., and Araújo-Moreira, F.M.: Multilevel ferromagnetic behavior of room-temperature bulk magnetic graphite. Phys. Rev. B 71, 100404(R) (2005).CrossRefGoogle Scholar
18Shibayama, Y., Sato, H., Enoki, T., and Endo, M.: Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys. Rev. Lett. 84, 1744 (2000)CrossRefGoogle ScholarPubMed
19Kusakabe, K. and Maruyama, M.: Magnetic nanographite. Phys. Rev. B 67, 092406 (2003)CrossRefGoogle Scholar
20Li, D., Han, Z., Wu, B., Geng, D.Y., and Zhang, Z.D.: Ferromagnetic and spin-glass behaviors of nanosized oriented pyrolytic graphite in Pb-C nanocomposites. J. Phys. D: Appl. Phys. 41, 115005 (2008)CrossRefGoogle Scholar
21Stamopoulos, D., Manios, E., and Pissas, M.: Enhancement of superconductivity by exchange bias. Phys. Rev. B 75, 014501 (2007)CrossRefGoogle Scholar
22Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935 (2005)CrossRefGoogle Scholar
23Bergeret, F.S., Volkov, A.F., and Efetov, K.B.: Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321 (2005)CrossRefGoogle Scholar
24Ying, Z.J., Cuoco, M., Noce, C., and Zhou, H.Q.: Coexistence of strong pairing correlations and itinerant ferromagnetism arising from spin asymmetric bandwidths: A reduced BCS model study. Phys. Rev. B 78, 104523 (2008)CrossRefGoogle Scholar
25Pissas, M., Moraitakis, E., Stamopoulos, D., Papavassiliou, G., Psycharis, V., and Koutandos, S.: Surface barrier and bulk pinning in MgB2 superconductor. J. Supercond. 14, 615 (2001)CrossRefGoogle Scholar
26Burlachkov, L., Geshkenbein, V.B., Koshelev, A.E., Larkin, A.I., and Vinokur, V.M.: Giant flux creep through surface barriers and the irreversibility line in high-temperature superconductors. Phys. Rev. B 50, 16770 (1994)CrossRefGoogle ScholarPubMed
27Yosida, Y. and Oguro, I.: Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes. J. Appl. Phys. 86, 999 (1999)CrossRefGoogle Scholar
28Zhang, L.Y., Zhang, J.L., and Cui, G.J.: Physics in Superconductors (Electronic Industry Press, Beijing, China, 1995), p. 236.Google Scholar
29Kim, G.T., Jhang, S.H., Park, J.G., Park, Y.W., and Roth, S.: Non-ohmic current–voltage characteristics in single-wall carbon nanotube network. Synth. Met. 117, 123 (2001)CrossRefGoogle Scholar
30Hunger, T., Lengeler, B., and Appenzeller, J.: Transport in ropes of carbon nanotubes: Contact barriers and Luttinger liquid theory. Phys. Rev. B 69, 195406 (2004)CrossRefGoogle Scholar
31Zhang, Y., Ichihashi, I., Landree, E., Nihey, F., and Iijima, S.: Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285, 1719 (1999)Google Scholar
32Kim, J., Lee, J.O., Oh, H.Y., Yoo, K.H., and Kim, J.J.: Temperature dependence of the current-voltage characteristics of a carbonnanotube heterojunction. Phys. Rev. B 64, 161404(R) (2001).Google Scholar