Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T02:15:27.108Z Has data issue: false hasContentIssue false

Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells

Published online by Cambridge University Press:  21 August 2012

Kang Xu*
Affiliation:
Electrochemistry Branch, Power and Energy Division, Sensor and Electron Devices Directorate, U. S. Army Research Laboratory, Adelphi, Maryland 20783
Arthur von Wald Cresce
Affiliation:
Electrochemistry Branch, Power and Energy Division, Sensor and Electron Devices Directorate, U. S. Army Research Laboratory, Adelphi, Maryland 20783
*
a)Address all correspondence to this author. e-mail: conrad.k.xu.civ@mail.mil
Get access

Abstract

In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
2.Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).CrossRefGoogle ScholarPubMed
3.Peled, E. and Straze, H.: The kinetics of the magnesium electrode in thionyl chloride solutions. J. Electrochem. Soc. 124, 1030 (1977).CrossRefGoogle Scholar
4.Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047 (1979).CrossRefGoogle Scholar
5.Wang, Y. and Balbuena, P., eds: Lithium Ion Batteries: Solid Electrolyte Interphase (Imperial College Press, London 2004).Google Scholar
6.Thomas, M.G.S.R., Bruce, P.G., and Goodenough, J.B.: AC impedance analysis of polycrystalline insertion electrodes: Application to Li1-xCoO2. J. Electrochem. Soc. 132, 1521 (1985).CrossRefGoogle Scholar
7.Yang, L., Ravdel, B., and Lucht, B.: Electrolyte reactions with the surface of high voltage Li Ni0.5Mn1.5O4 cathodes for lithium ion batteries. Electrochem. Solid-State Lett. 13, A95 (2010).CrossRefGoogle Scholar
8.Cresce, A.V. and Xu, K.: Electrolyte additive in support of 5V Li ion chemistry. J. Electrochem. Soc. 158, A337 (2011).CrossRefGoogle Scholar
9.Xu, K.: Whether EC and PC differ in interphasial chemistry on graphitic anodes and how. J. Electrochem. Soc. 156, A751 (2009).CrossRefGoogle Scholar
10.Hérold, A.: Research on the graphite intercalation compounds. Bull. Soc. Chim. Fr. 187, 999 (1955).Google Scholar
11.Dey, A.N. and Sullivan, B.P.: The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 117, 222 (1970).CrossRefGoogle Scholar
12.Yazami, R. and Touzain, P.H.: A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365 (1983).CrossRefGoogle Scholar
13.Nagaura, T.: Li ion batteries. In Proceedings of the 5th International Seminar on lithium battery technology and applications, Deerfield Beach, FL. March 5-7, 1990. Florida Educational Seminars Inc., Boca Raton, FL, 1990.Google Scholar
14.Fong, R., von Sacken, U., and Dahn, J.R.: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009 (1990).CrossRefGoogle Scholar
15.Aurbach, D., Daroux, M.L., Faguy, P.W., and Yeager, E.: Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611 (1987).CrossRefGoogle Scholar
16.Aurbach, D., Gofer, Y., and Ben-Zion, M.: Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163 (1992).Google Scholar
17.Aurbach, D., Markovsky, B., Schecter, A., Ein-Eli, Y., and Cohen, H.: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809 (1996).CrossRefGoogle Scholar
18.Xu, K., Lee, U., Zhang, S., and Jow, T.R.: Synthesis and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. J. Phys. Chem. B. 110, 7708 (2006).CrossRefGoogle Scholar
19.Kanamura, K., Tamura, H., Shiraishi, S., and Takehara, Z.: XPS analysis of lithium surfaces following immersions in various solvents containing LiBF4. J. Electrochem. Soc. 142, 340 (1995).CrossRefGoogle Scholar
20.Peled, E., Golodnitsky, D., Menachem, C., Bar-Tow, D.: An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145, 3482 (1998).CrossRefGoogle Scholar
21.Zhuang, G.V., Xu, K., Yang, H., Jow, T.R., and Ross, P.N. Jr: Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2M LiPF6/EC: EMC electrolyte. J. Phys. Chem. B 109, 17567 (2005).CrossRefGoogle Scholar
22.Malmgren, S., Rensmo, H., Gustafsson, T., Gorgoi, M., and Edström, K.: Nondestructive depth profiling of the solid electrolyte interphase on LiFePO4 and graphite electrodes. ECS Trans. 25, 121 (2010).CrossRefGoogle Scholar
23.Zhuang, G.V. and Ross, P.N.: Analysis of the chemical composition of the passive film on Li-ion battery anodes using attenuated total reflection infrared spectroscopy. Electrochem. Solid-State Lett. 6, A136 (2006).CrossRefGoogle Scholar
24.Onuki, M., Kinoshita, S., Sakata, Y., Yanagidate, M., Otake, Y., and Ue, M.: Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents. J. Electrochem. Soc. 155, A794 (2008).CrossRefGoogle Scholar
25.Xu, K., Zhang, S., Bruce, B.A., and Jow, T.R.: Lithium bis(oxalate)borate stabilizes graphite anode in propylene carbonate. Electrochem. Solid-State Lett. 5, A259 (2002).CrossRefGoogle Scholar
26.Jeong, S.K., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z.: Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem. Solid-State Lett. 6, A13 (2003).CrossRefGoogle Scholar
27.Xiao, A., Yang, L., Lucht, B.L., Kang, S.H., and Abraham, D.P.: Examining the solid electrolyte interphase on binder-free graphite electrodes. J. Electrochem. Soc. 156, A318 (2009).CrossRefGoogle Scholar
28.Chu, A.C., Josefowicz, J.Y., and Farrington, G.C.: Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy. J. Electrochem. Soc. 144, 4161 (1997).CrossRefGoogle Scholar
29.Hirasawa, K.A., Sato, T., Asahina, H., Yamaguchi, S., and Mori, S.: In situ electrochemical atomic force microscope study on graphite electrodes. J. Electrochem. Soc. 144, L81 (1997).CrossRefGoogle Scholar
30.Imhof, R. and Novák, P.: In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes. J. Electrochem. Soc. 145, 1081 (1998).CrossRefGoogle Scholar
31.Bar-Tow, D., Peled, E., and Burstein, L.: A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J. Electrochem. Soc. 146, 824 (1999).CrossRefGoogle Scholar
32.Persson, K., Sethuraman, V.A., Hardwick, L.J., Hinuma, Y., Meng, Y.S., Ven, A.V.D., Srinivasan, V., Kostecki, R., and Ceder, G.: Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176 (2010).CrossRefGoogle Scholar
33.Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379 (2006).CrossRefGoogle Scholar
34.Jehoulet, C., Biensan, P., Bodet, J.M., Broussely, M., Moteau, C., and Tessier-Lescourret, C.: in Batteries for Portable Applications and Electric Vehicles. Holmes, C.F., Landgrebe, A.R., eds., The Electrochemical Society Proceeding Series, Pennington, NJ, 1997; pp. 97–18, P974.Google Scholar
35.Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., and Heider, U.: On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423 (2002).CrossRefGoogle Scholar
36.Besenhard, J.O. and Fritz, H.P.: Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts. J. Electroanal. Chem. 53, 329 (1974).CrossRefGoogle Scholar
37.Besenhard, J.O., Winter, M., Yang, J., and Biberacher, W.: Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228 (1995).CrossRefGoogle Scholar
38.Wagner, M.R., Albering, J.H., Moeller, K.C., Besenhard, J.O., and Winter, M.: XRD evidence for the electrochemical formation of Li+(PC)yC-n. Electrochem. Commun 7, 947 (2005).CrossRefGoogle Scholar
39.Mizutani, Y., Abe, T., Ikeda, K., Ihara, E., Asano, M., Harada, T., Inaba, M., and Ogumi, Z.: Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2, 5-dimethyltetrahydrofuran. Carbon 35, 61 (1997).CrossRefGoogle Scholar
40.Abe, T., Kawabata, N., Mizutani, Y., Inaba, M., and Ogumi, Z.: Correlation between cointercalation of solvents and electrochemical intercalation of lithium into graphite in propylene carbonate solution. J. Electrochem. Soc. 150, A257 (2003).CrossRefGoogle Scholar
41.Xu, K.: “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. J. Electrochem. Soc. 154, A162 (2007).CrossRefGoogle Scholar
42.Xu, K., Lam, Y., Zhang, S.S., Jow, T.R., and Curtis, T.B.: Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411 (2007).CrossRefGoogle Scholar
43.Peled, E., Bar Tow, D., Merson, A., Gladkich, A., Burstein, L., and Golodnitsky, D.. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J. Power Sources 97/98, 52 (2001).CrossRefGoogle Scholar
44.Alliata, D.: Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun. 2, 436 (2000).CrossRefGoogle Scholar
45.Campana, F.P., Kötz, R., Vetter, J., Novák, P., and Siegenthaler, H.. In situ atomic force microscopy study of dimensional changes during Li+ ion intercalation/deintercalation in highly oriented pyrolytic graphite. Electrochem. Commun. 7, 107 (2005).CrossRefGoogle Scholar
46.Zhang, H., Li, F., Liu, C., Tan, J., and Cheng, H.. New insights into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205 (2005).CrossRefGoogle ScholarPubMed
47.Peled, E., Golodnitsky, D., Ulus, A., and Yufit, V.. Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta 50, 391 (2004).CrossRefGoogle Scholar
48.Lu, P. and Harris, S.J.. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035 (2011).CrossRefGoogle Scholar
49.Smith, A.J., Burns, J.C., Trussler, S., and Dahn, J.R.. Precision measurements of the coulombic efficiency of lithium –ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196 (2010).CrossRefGoogle Scholar
50.Smith, A.J., Burns, J.C., and Dahn, J.R.. A high precision study of the Coulombic efficiency of Li-ion batteries. Electrochem. Solid State Lett. 13, A177 (2010).CrossRefGoogle Scholar
51.Burns, J.C., Jain, G., Smith, A.J., Eberman, K.W., Scott, E., Gardner, J.P., and Dahn, J.R.. Evaluation of effects of additives in wound Li-ion cells through high precision Coulometry. J. Electrochem. Soc. 158, A255 (2011).CrossRefGoogle Scholar
52.Smith, A.J., Burns, J.C., Zhao, X., Xiong, D., and Dahn, J.R.. A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447 (2011).CrossRefGoogle Scholar
53.Tang, M. and Newman, J.. Electrochemical characterization of SEI-type passivating films using redox shuttles. J. Electrochem. Soc. 158, A530 (2011).CrossRefGoogle Scholar
54.Chiang, Y.M., Carter, W.C., Ho, B.H., and Duduta, M.: High energy density redox flow device. U.S. Patent No. 2010/0047671 A1. (Published on Feb. 25, 2010).Google Scholar
55.Duduta, M., Ho, B., Wood, V.C., Limthongkul, P., Brunini, V.E., Carter, W.C., and Chiang, Y.M.. Semisolid lithium rechargeable flow battery. Adv. Eng. Mater. 1, 511 (2011).CrossRefGoogle Scholar
56.Jeong, S.K., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z.: Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions. Electrochim. Acta. 47, 1975 (2002).CrossRefGoogle Scholar
57.Yanase, S. and Oi, T.. Solvation of lithium ion in organic electrolyte solutions and its isotopic reduced partition function ratios studied by ab initio molecular orbital method. J. Nucl. Sci. Technol. 39, 1060 (2002).CrossRefGoogle Scholar
58.Fukushima, T., Matsuda, Y., Hashimoto, H., and Arakawa, R.: Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectrometry. Electrochem. Solid-State Lett. 4, A127 (2001).CrossRefGoogle Scholar
59.Matsuda, Y., Fukushima, T., Hashimoto, H., and Arakawa, R.: Solvation of lithium ions in mixed organic electrolyte solutions by electrospray ionization mass spectrometry. J. Electrochem. Soc. 149, A1045 (2002).CrossRefGoogle Scholar
60.Morita, M., Asai, Y., Yoshimoto, N., and Ishikawa, M.: A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451 (1998).CrossRefGoogle Scholar
61.Borodin, O. and Smith, G.. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763 (2009).CrossRefGoogle ScholarPubMed
62.Yang, L., Xiao, A., and Lucht, B.: Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154, 131 (2010).CrossRefGoogle Scholar
63.Cresce, A.V. and Xu, K.: Preferential solvation of Li+ directs formation of interphase on graphitic anode. Electrochem. Solid-State Lett. 14, A154 (2011).CrossRefGoogle Scholar
64.Yamada, Y., Iriyama, Y., Abe, T., and Ogumi, Z.: Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: Effects of solvent and surface film. Langmuir 25, 12766 (2009).CrossRefGoogle ScholarPubMed
65.Xu, K., Cresce, A.V., and Lee, U.: Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+-desolvation at electrolyte/graphite interface. Langmuir 26, 11538 (2010).CrossRefGoogle ScholarPubMed