Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-19T05:54:20.524Z Has data issue: false hasContentIssue false

Large cryogenic storage of hydrogen in carbon nanotubes at low pressures

Published online by Cambridge University Press:  31 January 2011

B. B. Pradhan
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
A. A. Harutyunyan
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
D. Stojkovic
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
J. J. Grossman
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550
P. Zhang
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
M. M. Cole
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
V. Crespi
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
H. Goto
Affiliation:
Honda R&D Co., Ltd., Wako Research Center, Saitama 351–0193, Japan
J. Fujiwara
Affiliation:
Honda R&D Co., Ltd., Wako Research Center, Saitama 351–0193, Japan
P. P. Eklund
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

We report up to 6 wt% storage of H2 at 2 atm and T = 77 K in processed bundles of single-walled carbon nanotubes. The hydrogen storage isotherms are completely reversible; D2 isotherms confirmed this anomalous low-pressure adsorption and also revealed the effects of quantum mechanical zero point motion. We propose that our postsynthesis treatment of the sample improves access for hydrogen to the central pores within individual nanotubes and may also create a roughened tube surface with an increased binding energy for hydrogen. Such an enhancement may be needed to understand the strong adsorption at low pressure. We obtained an experimental isosteric heat qst = 125 ± 5 meV. Calculations are also presented that indicate disorder in the tube wall enhances the binding energy of H2.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Berry, G.D. and Aceves, S.M., Energy Fuels 12, 49 (1998).CrossRefGoogle Scholar
2.Hynek, S., Fuller, W., and Bentley, J., Int. J. Hydrogen Energy 22, 601 (1997).CrossRefGoogle Scholar
3.Rodriguez-Reinoso, F. and Linares-Solano, A., Chemistry and Physics of Carbon, edited by Thrower, P.A. (Marcel Dekker, Inc., New York, 1989), Vol. 22, p. 1.Google Scholar
4.Agarwal, R.K., Noh, J.S., Schwarz, J.A., and Davini, P., Carbon 25, 219 (1987).CrossRefGoogle Scholar
5.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature 386, 377–379 (1997).CrossRefGoogle Scholar
6.Heben, M.J., Dillon, A.C., Gennett, T., Alleman, J.L., Parilla, P.A., Jones, K.M., and Hornyak, G.L., in Nanotube and Related Materials, edited by Rao, A.M. (Mater. Res. Soc. Symp. Proc., 633), p. 17.Google Scholar
7.Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S., Science 286, 1127–1129 (1999).CrossRefGoogle Scholar
8.Chen, P., Wu, X., Lin, J., and Tan, K.L., Science 285, 91–93 (1999).CrossRefGoogle Scholar
9.Nutzenadel, C., Zuttel, H., Chartouni, D., and Schlaphach, L., Electrochem. Solid State Lett. 2, 30 (1999).CrossRefGoogle Scholar
10.Rajalakshmi, N., Dhathathreyan, K.S., Govindaraj, A., and Satishkumar, B.C., Electrochim. Acta 45, 4511 (2000).CrossRefGoogle Scholar
11.Lee, S.M., Park, K.S., Choi, Y.C., Park, Y.S., Bok, J.M., Bae, D.J., Nahm, K.S., Choi, Y.G., Yu, S.C., Kim, N-g., Frauenheim, T., and Lee, Y.H., Synth. Met. 113, 209 (2000).CrossRefGoogle Scholar
12.Chambers, A., Park, C., Baker, R.T.K., and Rodriguez, N.M., J. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
13.Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., Appl. Phys. Lett. 74, 2307 (1999).CrossRefGoogle Scholar
14.Yang, R.T., Carbon 38, 623 (2000).CrossRefGoogle Scholar
15.Pinkerton, F.E., Wicke, B.G., Olk, C.H., Tibbetts, G.G., Meisner, G.P., Meyer, M.S., and Herbst, J.F., J. Phys. Chem. B 104, 9460 (2000).CrossRefGoogle Scholar
16.Ahn, C.C., Ye, Y., Ratnakumar, B.V., Witham, C., Bowman, R.C., Jr., and B. Fultz, Appl. Phys. Lett. 73, 3378 (1998).CrossRefGoogle Scholar
17.Gupta, B.K. and Srivastava, O.N., Int. J. Hydrogen Energy 25, 825 (2000).CrossRefGoogle Scholar
18.Dresselhaus, M.S., Williams, K.A., and Eklund, P.C., MRS Bull. 45 (1999).Google Scholar
19.Dillon, A.C. and Heben, M.J., Appl. Phys. A 72, 133 (2001); V. Meregalli and M. Pariivello, Appl. Phys. A 72, 143 (2001); M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y-M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, and P. Bernier, Appl. Phys. A 72, 129 (2001); L. Schlapbach and A. Zuttl, Nature 414, 353 (2001).CrossRefGoogle Scholar
20.CarboLex Inc.; web site: www.carbolex.com.Google Scholar
21.Dresselhaus, M.S. and Eklund, P.C., Adv. Phys. 49, 705 (2000).CrossRefGoogle Scholar
22.Dresselhaus, M.S., Dresselhaus, G., and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
23.Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, Singapore, 1998).CrossRefGoogle Scholar
24.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388, 756 (1997).CrossRefGoogle Scholar
25.Hiden User Manual.Google Scholar
26.Pradhan, B.K. and Eklund, P.C. (unpublished result).Google Scholar
27.Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity (Academic Press, San Diego, CA, 1982).Google Scholar
28.Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Jr., Liu, J., and Smalley, R.E., Chem. Phys. Lett., 324, 213 (2000).CrossRefGoogle Scholar
29.Kostov, M.K., Cole, M.W., Lewis, J.C., Phong, D., and Johnson, J.K., Chem. Phys. Lett. 332, 26 (2000).CrossRefGoogle Scholar
30.Calbi, M.M., Toigo, F., and Cole, M.W., Phys. Rev. Lett. 86, 5062 (2001).CrossRefGoogle Scholar
31.Frankel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 1996); D. Porezag, Th. Freuenheim, and Th. Kohler, Phys. Rev. B 51, 12947 (1995).Google Scholar
32.Arellano, J.S., Molina, L.M., Rubio, A., and Alonso, J.A., J. Chem. Phys. 112, 8114 (2000).CrossRefGoogle Scholar
33.Williamson, A.J., Hood, R.Q., and Grossman, J.C., Phys. Rev. Lett. 87, 246406 (2001).CrossRefGoogle Scholar