Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T12:51:30.825Z Has data issue: false hasContentIssue false

Ion-beam induced disordering and onset of amorphization in spinel by defect accumulation

Published online by Cambridge University Press:  03 March 2011

N. Bordes
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131-1116
L.M. Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131-1116
R.C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131-1116
K.E. Sickafus
Affiliation:
Los Alamos National Laboratory, MST-4, Los Alamos, New Mexico 87545
Get access

Abstract

Ion-irradiation induces amorphization in many intermetallics and ceramics, but spinel (MgAl2O4) is considered a “radiation resistant” ceramic. Spinel was irradiated with 1.5 MeV Kr+ at 20 K and observed in situ by transmission electron microscopy (TEM). The spinel remained crystalline to a high dose of 1 × 1016 ions/cm2, without any evidence of amorphization. Another spinel was preimplanted with Ne (400 keV and 50 keV). The microstructure revealed a still crystalline material with 8 nm interstitial loops. After irradiation with 1.5 MeV Kr+ (20 K), amorphization, a result of cation disordering, initiated at a dose of 1.7 × 1015 ions/cm2. At a dose of 1 × 1016 ions/cm2, the spinel was partially amorphous and the remaining crystalline domains disordered. These results show that spinel can be disordered and that amorphization can be triggered by the introduction of stable defects, followed by ion irradiation at low temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Clinard, F. W., J. Mater. Energy Systems 6 (2) (September 1984).CrossRefGoogle Scholar
2Hurley, G. F., Kennedy, J. C., Clinard, F. W., Youngman, R. A., and McDonell, W. R., J. Nucl. Mater. 103–104, 761 (1981).CrossRefGoogle Scholar
3Clinard, F. W., Hurley, G. F., and Hobbs, L. W., J. Nucl. Mater. 108–109, 655 (1982).CrossRefGoogle Scholar
4Clinard, F. W., Hurley, G. F., Hobbs, L. W., Rohr, D. L., and Youngman, R. A., J. Nucl. Mater. 122–123, 1386 (1984).CrossRefGoogle Scholar
5Clinard, F. W., Farnum, E. H., Griscom, D. L., Mattas, R. F., Medley, S. S., Wiffen, F. W., Wojtowicz, S. S., Youngman, K. M., and Zinkle, S. J., J. Nucl. Mater. 191–194, 1399 (1992).CrossRefGoogle Scholar
6Sickafus, K. E., Larson, A. G., Yu, N., Nastasi, M., Hollenberg, G. W., Garner, F. A., and Bradt, R. C., J. Nucl. Mater. (1994).Google Scholar
7Zinkle, S. J., J. Am. Ceram. Soc. 72 (8), 1343 (1989).CrossRefGoogle Scholar
8Zinkle, S. J., J. Nucl. Mater. 191–194, 645 (1992).CrossRefGoogle Scholar
9Zinkle, S. J., Proc. 15th Int. Symp. on Effects of Radiation on Materials, Nashville, TN, June 1990, ASTM STP 1125, edited by Stoller, R.E.et al. (ASTM, Philadelphia, PA, 1992), p. 749.Google Scholar
10Yamada, R., Zinkle, S. J., and Pells, G. P., J. Nucl. Mater. 209, 191 (1994).CrossRefGoogle Scholar
11Hobbs, L. W., Clinard, F. W., Zinkle, S. J., and Ewing, R. C., Radiat. Eff. in Ceramics, J. Nucl. Mater. 216, 291 (1994).Google Scholar
12Bordes, N., Ewing, R. C., Cooper, E. A., and Sickafus, K. E., J. Nucl. Mater. (1994, in press).Google Scholar
13Pedraza, D. F., Phys. Rev. B 38 (7), 4803 (Sept. 1988).CrossRefGoogle Scholar
14Pedraza, D. F., Radiat. Eff. Defects in Solids 112, 11 (1990).CrossRefGoogle Scholar
15Zinkle, S. J. and Singh, B. N., J. Nucl. Mater. 199, 173 (1993).CrossRefGoogle Scholar
16Lam, N. Q. and Okamoto, P. R., MRS Bull. XIX (7), 41 (July 1994).CrossRefGoogle Scholar
17Yu, N., Nastasi, M., Hollander, M. G., Evans, C. R., Maggiore, C. J., Sickafus, K. E., and Tesmer, J. R., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R. J., Holland, O. W., Jones, K. S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), pp. 6974.Google Scholar
18Yu, N., Sickafus, K. E., and Nastasi, M., Philos. Mag. Lett. 70, 235 (1994).CrossRefGoogle Scholar
19Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
20Zinkle, S. J., Nucl. Instrum. Methods B 91, 234246 (1994).CrossRefGoogle Scholar