Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T21:06:20.075Z Has data issue: false hasContentIssue false

Investigation of the solidus boundaries and microstructure in the ZnO–PrO1.5–CoO system

Published online by Cambridge University Press:  31 January 2011

Sung-Yong Chun
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-10-okayama, Meguro-ku, Tokyo 152, Japan
Naoki Wakiya
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-10-okayama, Meguro-ku, Tokyo 152, Japan
Kazuo Shinozaki
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-10-okayama, Meguro-ku, Tokyo 152, Japan
Nobuyasu Mizutani
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-10-okayama, Meguro-ku, Tokyo 152, Japan
Get access

Abstract

ZnO ceramics used as varistors are prepared with cobalt oxide as an essential additive to improve nonohmic properties. Because some of its effects during the liquid-phase sintering remain unexplained, we characterize the liquid-phase formation temperatures and phase reactions in the system ZnO–PrO1.5–CoO. Using differential thermal analysis (DTA) during sintering, we detect new thermal phenomena. An addition of cobalt oxide to ZnO–PrO1.5 mixtures (ZnO–5 mol% PrO1.5–10 mol% CoO) significantly decreases the liquid-phase formation temperature to 1272 ± 5 °C, which is about 110 °C lower compared to those in the ZnO–PrO1.5 system. Characterization of ceramics quenched during sintering allows us to describe an isoplethal section with PrO1.5 contents of 5 mol% and solubility limit of Co in ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Levinson, L. M. and Phillip, H., Am. Ceram. Soc. Bull. 65 (4), 639646 (1986).Google Scholar
2.Wong, J., J. Appl. Phys. 51 (8), 44534459 (1980).CrossRefGoogle Scholar
3.Kim, J., Kimura, T., and Yamaguchi, T., J. Am. Ceram. Soc. 72 (8), 15411544 (1989).CrossRefGoogle Scholar
4.Peigney, A., Andrianjatovo, H., Legros, R., and Rousset, A., J. Mater. Sci. 27, 23972405 (1992).CrossRefGoogle Scholar
5.Alles, A. B. and Burdick, V. L., J. Appl. Phys. 70 (11), 68836890 (1991).CrossRefGoogle Scholar
6.Levin, E. M. and Roth, R. S., J. Res. Natl. Bur. Stand. (U.S.) 68A (2), 197206 (1964).CrossRefGoogle Scholar
7.Safronov, G. M., Batog, V. N., Stepanyuk, T. V., and Fedorov, P. M., Russ. J. Inorg. Chem. (Engl. Transl.) 16 (3), 460461 (1971).Google Scholar
8.Wong, J. and Morris, W. G., Am. Ceram. Soc. Bull. 53, 816820 (1974).Google Scholar
9.Stanisic, G., Krastanvic, I., Susic, M., Milisevski, M., and Ristic, M., Silic. Ind. 49 (7–8), 167168 (1984).Google Scholar
10.Hwang, J. H., Mason, T. O., and Dravid, V. P., J. Am. Ceram. Soc. 77 (6), 14991504 (1994).CrossRefGoogle Scholar
11.Chun, S. Y., Wakiya, N., Funakubo, H., Shinozaki, K., and Mizutani, N., J. Am. Ceram. Soc. 80 (4), 995998 (1997).CrossRefGoogle Scholar
12.Kulikov, I. S., in Thermodinamika Oksidov Spravochik (Nisso Tsuushinsha, Moskva, 1986), pp. 263266.Google Scholar
13.Alles, A. B., Puskas, R., Callahan, G., and Burdick, V. L., J. Am. Ceram. Soc. 76 (8), 2098–1202 (1993).CrossRefGoogle Scholar
14.Wise, E. M., in Palladium: Recovery, Properties, and Uses (Academic Press, Inc., New York and London, 1968), p. 6.Google Scholar
15.Sakurai, T., Universal Program System for Crystallographic Computation (Crystallographic Society of Japan, 1967).Google Scholar
16.Martin, R. L., Nature (London) 165, 202 (1950).CrossRefGoogle Scholar
17.Burnham, D. A. and Eyring, L., J. Phys. Chem. 72 (13), 44154424 (1968).CrossRefGoogle Scholar
18.Nachman, J. F. and Lundin, C. E., in Proc. Second Conf. on Rare Earth Research, Sept. 24–27, 1961, Univ. of Denver, Glenwood Springs, CO (Gordon and Breach, New York, 1961); pp. 339353.Google Scholar
19.Mukae, K. and Nagasawa, I., in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, edited by Levinson, L. M. (American Ceramic Society, Westerville, OH, 1981), pp. 331341.Google Scholar
20.Navrovsky, A. and Muan, A., J. Inorg. Nucl. Chem. 32, 34713484 (1970).CrossRefGoogle Scholar
21.Bates, C. H., White, W. B., and Roy, R., Science 137, 993 (1962).CrossRefGoogle Scholar
22.Uematsu, K., Morimoto, T., Kato, Z., Uchida, N., and Saito, K., J. Am. Ceram. Soc. 72 (6), 10701072 (1989).CrossRefGoogle Scholar