Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T03:25:03.443Z Has data issue: false hasContentIssue false

Investigation of SiC–AlN: Part III. Static and dynamic fatigue

Published online by Cambridge University Press:  03 March 2011

Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering. National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
Jyh-Ming Jih
Affiliation:
Department of Materials Science and Engineering. National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
Get access

Abstract

SiC/AlN composites with controlled interfacial solid solution were employed in this present work to investigate the effects of interfacial chemical composition and AlN polytypes on the fatigue properties. The dynamic strength of the SiC/AlN composite was found to decrease initially as the stressing rate decreased. However, the strength increased with a decrease in stress rate at a low stress rate region of below 0.01 MPa/s. Crack arrest could have occurred before exhibiting spontaneous failure at an intermediate stress rate of 0.01 MPa/s. It was found that both the interfacial bonding strength and testing technique had essential effects on the behavior of slow crack growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sheppard, L. M., Am. Ceram. SOC.Bull. 69(11), 18011812 (1990).Google Scholar
2Huang, J-L. and Jih, J-M., J. Mater. Res. 10, 651 (1995).CrossRefGoogle Scholar
3Huang, J-L. and Jih, J-M., unpublished.Google Scholar
4Evans, A. G., J. Mater. Sci. 9, 11451152 (1974).CrossRefGoogle Scholar
5Kuo, F. J. and Huang, J-L., J. Mater. Sci. Eng. A174, 157164 (1994).Google Scholar
6Huang, J-L. and Lin, J., J. Mater. Sci. 28, 10741080 (1993).CrossRefGoogle Scholar
7Takao, Y. and Taya, M., J. Appl. Mech. 52, 806810 (1985).CrossRefGoogle Scholar
8Leroy, G., Embury, J. D., Edward, G., and Ashby, M.F., Acta Metall. 29, 15091522 (1981).CrossRefGoogle Scholar
9Chawia, K. K., Composite Materials, Science and Engineering, edited by Ilschner, B. and Grant, N. J. (Springer-Verlag, New York, 1987).Google Scholar
10Jones, R. H., Schilling, C. H., and Scheenlein, L.H., Mater. Sci. Forum 46, 227230 (1989).Google Scholar
11KO, H. N., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 99(7), 533537 (1981).CrossRefGoogle Scholar
12Beak, J. T. and Bar-on, Isa, Ceram. Eng. Sci. Proc. 11(7–8), 599603 (1989).Google Scholar
13KO, H.N., J. Non-Cryst. Solids 102, 9599 (1988).Google Scholar
14Singh, J. P., J. Am. Ceram. Soc. 62, 179 (1979).CrossRefGoogle Scholar
15Hilling, W. B. and Charles, R. J., in High Strength Materials, edited by Zackay, V.F. (John Wiley & Sons, New York, 1964), pp. 682701.Google Scholar
16Huang, J-L., Ph.D. Dissertation, University of Utah (1984).Google Scholar
17Cook, T. S. and Erdogan, F., Int. J. Eng. Sci. 10, 677697 (1972).CrossRefGoogle Scholar
18Erdogan, F. and Cook, T. S., Int. J. Fract. 10(2), 227240 (1974).CrossRefGoogle Scholar
19Erdogan, F. and Gupta, G. D., Int. J. Fract. 11(1), 1327 (1975).CrossRefGoogle Scholar
20Erdogan, F. and Biricikoglu, V., Int. J. Eng. Sci. 11, 745766 (1973).CrossRefGoogle Scholar
21Broek, D., Elementary Engineering Fracture Mechanics, 4th ed. (Martinus Nijoff Publishers, Dordrecht, The Netherlands, 1986), Chap. 6.Google Scholar
22Evans, A. G., Int. J. Fracture 10(2), 251259 (1974).CrossRefGoogle Scholar
23Ritter, J. E. Jr., Fracture Mechanics Ceramics 4, 667686 (1974).Google Scholar
24Zeng, K., Breder, K., and Rowcliffe, D., Cerarn. Eng. Sci. Proc. 12(9–10), 22332250 (1991).CrossRefGoogle Scholar
25KO, H.N., J. Mater. Sci. Lett., 14381441 (1989).CrossRefGoogle Scholar
26Singh, J. P., Virkar, A. V., Shetty, D. K., and Gordon, R. S., Fracture Mechanics Ceramics 8, 273284.Google Scholar
27Wiederhorn, S. M., J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
28Wiederhorn, S. M. and Bolz, L. H., 1. Am. Ceram. SOC. 53, 543 (1970).CrossRefGoogle Scholar
29Ritter, J. E. Jr. and Humenik, J. N., J. Mater. Sci. 14, 626632 (1979).CrossRefGoogle Scholar
30Wakabayashi, H. and Tomozawa, M., J. Non-Cryst. Solids 102, 9599 (1988).CrossRefGoogle Scholar