Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T15:05:33.720Z Has data issue: false hasContentIssue false

Influence of ligand groups in Ti precursors on phase transformation and microstructural evolution of TiO2 thin films prepared by the wet chemical process

Published online by Cambridge University Press:  31 January 2011

Chu-Chi Ting
Affiliation:
Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, Taiwan 300, Republic of China
San-Yuan Chen*
Affiliation:
Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, Taiwan 300, Republic of China
*
a)Address all correspondence to this author. e-mial: sychen@cc.nctu.edu.tw
Get access

Abstract

TiO2 thin films prepared by metalorganic decomposition (MOD-TiO2) and sol-gel processes (SG-TiO2) were investigated in terms of the anatase-to-rutile phase transformation and microstructural evolution. It was found that the chemical reactivity of the ligand groups initially coordinated on the titanium precursor plays a decisive role in the structure development of as-deposited SG- and MOD-TiO2 films. MOD-TiO2 films consist of small aggregated particles and therefore, tend to coalesce together to form an inhomogeneous microstructure during the anatase-to-rutile phase transformation. On the other hand, SG-TiO2 films consist of uniform large particles that tend to grow homogeneously. MOD-TiO2 films showed a higher crystallization temperature than the SG-TiO2 films but the temperature of the anatase-to-rutile phase transformation is much lower in MOD- (approximately 775 °C) as compared to SG-TiO2 films (approximately 930 °C). The activation energy (Q) was estimated as 524 and 882 kJ/mol for the MOD- and SG-TiO2 films, respectively. The lower transformation temperature and activation energy in MOD-TiO2 films were due to smaller grain size and more potential nucleation sites existing in the un-transformed MOD-TiO2 film structure, which can accelerate the rate of anatase-to-rutile transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Burns, G.P., J. Appl. Phys. 65, 2095 (1965).Google Scholar
2.Hadj, F.B., Sempere, R., and Phalippou, J., J. Non-Cryst. Solids 82, 417 (1986).CrossRefGoogle Scholar
3.Gratzel, M., Coments Inorg. Chem. 12, 93 (1991).Google Scholar
4.Yi, G. and Sayer, M., J. Sol-Gel Sci. Technol. 6, 65 (1996).CrossRefGoogle Scholar
5.Yi, G. and Sayer, M., J. Sol-Gel Sci. Tech. 6, 74 (1996).Google Scholar
6.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, New York, 1990), p. 58.Google Scholar
7.Babonneau, F., Doeuff, S., Leaustic, A., Sanchez, C., Cartier, C., and Verdaguer, M., Inorg. Chem. 27, 3166 (1988).Google Scholar
8.Brinker, C. J. and Scherer, G.W., Sol-Gel Science (Academic Press, New York, 1990), p. 46.Google Scholar
9.Rao, C.N.R., Yoganarasimhan, S.R., and Faeth, P.A., Trans. Faraday Soc. 57, 504 (1961).CrossRefGoogle Scholar
10.Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391(1965).CrossRefGoogle Scholar
11.Yoldas, E.E., J. Mater. Sci. 21, 1087 (1986).CrossRefGoogle Scholar
12.Doueff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
13.Quinson, J.F., Chatelut, M., Guizard, C., Larbot, A., and Cot, L., J. Non-Cryst. Solids 121, 72 (1990).Google Scholar
14.Kim, Y.J. and Francis, L.F., J. Mater. Sci. 133, 4423 (1998).Google Scholar
15.Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).Google Scholar
16.Ding, X.Z. and Liu, X.H., J. Mater. Res. 13, 2556 (1998).Google Scholar
17.DeLoach, J.D., Scarel, G., and Aita, C.R., J. Appl. Phys. 85, 2377 (1999).CrossRefGoogle Scholar
18.Babonneau, F., Leaustic, A., and Livage, J. in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 310.Google Scholar
19.Nakamoto, K., Infrared and Raman spectra of Inorganic and Coordination Compounds, 3rd ed. (Wiley, New York, 1978).Google Scholar
20.Catterick, J. and Thornton, P., in Advanced Inorganic Chemistry and Radio Chemistry, edited by Emeleus, H.J. and Sharpe, A.G. (Academic Press, New York, London, 1977), Vol. 20, p. 291.Google Scholar
21.Von Thiele, K.H. and Panse, M., Z. Anorg. Allg. Chem. 441, 23 (1978).CrossRefGoogle Scholar
22.Doeuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
23.Eradley, D.C., Mehrotra, R.C., and Gaur, D.P.,Metal Alkoxide (Academic Press, New York, 1978), p. 118.Google Scholar
24.Calzada, M.L. and Olmo, L.D., J. Non-Cryst. Solids 121, 416 (1990).Google Scholar
25.Amor, S.B., Baud, G., Besse, J.P., and Jacquet, M., Mater. Sci. Eng. B47, 110 (1997).CrossRefGoogle Scholar
26.Debnath, R. and Chaudhuri, J., J. Mater. Res. 7, 3348 (1992).Google Scholar
27.Gamboa, J.A. and Pasquevich, D.M., J. Am. Ceram. Soc. 75, 2934 (1992).Google Scholar
28.Spurr, R.A. and Myers, H., Analytical Chemistry 29, 760 (1957).Google Scholar
29.Jean, J.H. and Lin, S.C., J. Mater. Res. 14, 2922 (1999).CrossRefGoogle Scholar
30.Shannon, R.D. and Pask, J.A., Am. Mineralogist 49, 1707 (1964).Google Scholar
31.Kumar, K.P., Keizer, K., and Burggraaf, A.J., J. Mater. Chem. 3, 917 (1993).Google Scholar
32.Gribb, A.A. and Banfield, J.F., Am. Mineralogist 82, 717 (1997).CrossRefGoogle Scholar
33.Barsoum, M., Fundamentals of Ceramics (McGraw-Hill, New York, 1997), p. 364.Google Scholar
34.Kumar, K.P., Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H., and Morooka, S., Nature (London) 358, 48 (1992).Google Scholar
35.Tagami, T. and Tanaka, S.I., Acta Mater. 45, 3341 (1997).Google Scholar
36.Tagami, T. and Tanaka, S.I., J. Mater. Sci. 34, 355 (1999).Google Scholar
37.Yang, J. and Ferreira, J.M.F., Mater. Res. Bull. 33, 389 (1998).Google Scholar
38.Christian, J.W., The Theory of Transformations in Metals and Alloys (Pergamon, London, United Kingdom, 1965), p. 525.Google Scholar