Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T02:36:36.109Z Has data issue: false hasContentIssue false

Hot deformation and softening response in boron-modified two-phase titanium aluminide Ti–48Al–2V–0.2B

Published online by Cambridge University Press:  19 October 2020

Nitish Bibhanshu*
Affiliation:
Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore560012, India
Gyan Shankar
Affiliation:
Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore560012, India
Satyam Suwas*
Affiliation:
Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore560012, India
*
a)Address all correspondence to these authors. e-mail: nitishb@iisc.ac.in, nitishbibhanshu@gmail.com
Get access

Abstract

Hot deformation and softening response for the titanium aluminide Ti–48Al–2V–0.2B has been investigated. The deformation response to softening mechanisms has been examined. Deformation experiments were carried out in the strain rate range 0.01–10 s−1 keeping the temperature constant at 1200 °C and in the temperature range 1000–1200 °C at the strain rate 1 s−1. With an increase in strain rate, the microstructural changes associated with the softening mechanism include breaking of the lamellae, spheroidization of the broken laths and dynamic recrystallization. For the strain rate 1 s−1, deformation in the (α2 +γ) phase field leads to fine recrystallized grains, remnant lamellae and cavitation along the grain boundaries (for temperatures 1000 and 1100 °C). Deformation in the (α +γ) phase field leads to dynamic recrystallization at the shear bands, within the lamellae, breaking and rotation of the α phase during the continuous increase in the deformation strain.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current Address: Reactor & Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN - 37831, US

References

Appel, F., Paul, J.D.H., and Oehring, M.: Gamma Titanium Aluminide Alloys. First (WILEY-VCH Verlag GmbH & Co. KGaA, Germany, 1 (2011)). doi:10.1002/9783527636204.Google Scholar
Kim, Y.W.: Ordered intermetallic alloys, part III: Gamma titanium aluminides. Jom 46, 30 (1994).CrossRefGoogle Scholar
Tretyachenko, L.: Aluminium – titanium – vanadium. MSI Eureka in Springer Materials 11A4, 2653 (2004). doi:10.1007/11008514_4.Google Scholar
Lasalmonie, A.: Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics 14, 1123 (2006).CrossRefGoogle Scholar
Jiang, Y., He, Y.H., Xu, N.P., Zou, J., Huang, B.Y., and Liu, C.T.: Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16, 327 (2008).CrossRefGoogle Scholar
Erdely, P., Werner, R., Schwaighofer, E., Clemens, H., and Mayer, S.: In-situ study of the time – temperature-transformation behaviour of a multi-phase intermetallic stabilised TiAl alloy. Intermetallics 57, 17 (2015).CrossRefGoogle Scholar
Kim, Y.W. and Dimiduk, D.M.: Progress in the understanding of gamma titanium aluminides. Jom 43, 40 (1991).CrossRefGoogle Scholar
Hu, D.: Effect of composition on grain refinement in TiAl-based alloys. Intermetallics 9, 1037 (2001). ).CrossRefGoogle Scholar
Oehring, M., Stark, A., Paul, J.D.H., Lippmann, T., and Pyczak, F.: Microstructural refinement of boron containing β-solidifying γ-titanium aluminide alloys. Mater. Sci. Forum 706–709, 1089 (2012).CrossRefGoogle Scholar
Oehring, M., Stark, A., Paul, J.D.H., Lippmann, T., and Pyczak, F.: Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the phase field. Intermetallics 32, 12 (2013).CrossRefGoogle Scholar
Cui, W.F., Liu, C.M., Bauer, V., and Christ, H.J.: Thermomechanical fatigue behaviours of a third generation γ-TiAl based alloy. Intermetallics 15, 675 (2007).CrossRefGoogle Scholar
Semiatin, S.L., Shanahan, B.W., and Meisenkothen, F.: Hot rolling of gamma titanium aluminide foil. Acta Mater. 58, 4446 (2010).CrossRefGoogle Scholar
Erdely, P., Staron, P., Maawad, E., Schell, N., Klose, J., Mayer, S., and Clemens, H.: Effect of hot rolling and primary annealing on the microstructure and texture of a β-stabilised γ -TiAl based alloy. Acta Mater. 126, 145153 (2017). doi:http://dx.doi.org/10.1016/j.actamat.2016.12.056.CrossRefGoogle Scholar
Semiatin, S.L. and Seetharaman, V.: Load-signature analysis for pack rolling of near-gamma titanium aluminide alloys. Metall. Mater. Trans. A 25, 2539 (1994).CrossRefGoogle Scholar
Xu, D.S., Wang, H., Yang, R., and Veyssière, P.: Point defect formation by dislocation reactions in TiAl. IOP Conf. Ser. Mater. Sci. Eng. 3, 012024 (2009).CrossRefGoogle Scholar
S. H., Whang, and Y. D., Hahn. High temperature ordered intermetallic Alloys III, Materials Research Society Symposium Proceedings, Vol 133, edited by C.T. Liu, A.I. Taub, M.S. Stoloff and C.C Koch (Pittsburgh, Pennsylvania: Materials Research Society), P- 687, 1989.Google Scholar
Hall, E. L., and Huang, S. C.. High Temperature Ordered Intermetallic Alloys III, Materials Research Society Symposium Proceedings, Vol 133, edited by C.T. Liu, A.I. Taub, M.S. Stoloff and C.C Koch (Pittsburgh, Pennsylvania: Materials Research Society), P-693, 1989.Google Scholar
Chaudhuri, K. and Das, S.: Deformation microstructures of Ti-52at%Al-3at%V alloy. Philos. Mag. Letts 67, 143 (1993).Google Scholar
Seetharaman, V. and Semiatin, S.L.: Influence of temperature transients on the hot workability of a two-phase gamma titanium aluminide alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 27A, 1987 (1996).CrossRefGoogle Scholar
Hu, D.: Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics 10, 851 (2002).CrossRefGoogle Scholar
Roy, S., Tungala, V., and Suwas, S.: Effect of hypoeutectic boron addition on the beta transus of Ti-6Al-4V alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 2535 (2011).CrossRefGoogle Scholar
Hecht, U., Witusiewicz, V., Drevermann, A., and Zollinger, J.: Grain refinement by low boron additions in niobium-rich TiAl-based alloys. Intermetallics 16, 969 (2008).CrossRefGoogle Scholar
Sujata, M., Sastry, D.H., and Ramachandra, C.: Microstructural characterization and creep behaviour of as-cast titanium aluminide Ti–48Al–2 V. Intermetallics 12, 691697 (2004).CrossRefGoogle Scholar
Kartavykh, A.V., Gorshenkov, M.V., and Podgorny, D.A.: Grain refinement mechanism in advanced??-TiAl boron-alloyed structural intermetallics: The direct observation. Mater. Lett. 142, 294 (2015).CrossRefGoogle Scholar
Roy, S., Suwas, S., Tamirisakandala, S., Srinivasan, R., and Miracle, D.B.: Processing response of boron modified Ti-6A1-4 V alloy in (alpha + beta) working regime. TMS 2009 138th Annual Meeting and Exhibition, February 15–19, 3, 63 (2009).Google Scholar
Lefebvre, W., Menand, A., Loiseau, A., and Blavette, D. : Atom probe study of phase transformations in a Ti–48 at.% Al alloy. Mater. Sci. Eng. A A327, 4046 (2002).CrossRefGoogle Scholar
Zghal, S., Naka, S., and Couret, A.: Quantitative TEM analysis of the lamellar microstructure in TiAl based alloys. Acta Mater. 45, 3005 (1997).CrossRefGoogle Scholar
Liu, H., Rong, R., Gao, F., Liu, Y., Li, Z., and Wang, Q.: Hot deformation mechanisms of an as-extruded TiAl alloy with large amount of remnant lamellae. J. Mater. Eng. Perform. 26, 3151 (2017).CrossRefGoogle Scholar
Bibhanshu, N. and Suwas, S.: Hot deformation and dynamic recrystallization in titanium aluminide. Mater. Sci. Forum 941, 1391 (2018).CrossRefGoogle Scholar
Bibhanshu, N. and Suwas, S.: Mechanism of shear band formation and dynamic softening in a two-phase (α2 + γ) titanium aluminide. J. Mater. Res. 35(13), 16351646 (2020). doi:https://doi.org/10.1557/jmr.2020.99.CrossRefGoogle Scholar
Bibhanshu, N., Bhattacharjee, A., and Suwas, S.: Hot deformation response of titanium aluminides Ti–45Al-(5, 10)Nb-0.2B-0.2C with pre-conditioned microstructures. J. Alloys Compd., 832, 154584 (2020). doi:https://doi.org/10.1016/j.jallcom.2020.154584.CrossRefGoogle Scholar
Dey, A. and Mukhopadhyay, A.: Nanoindentation of brittle solids (2014).Google Scholar
Tazuddin, A., Biswas, K., and Gurao, N.P.: Deciphering micro-mechanisms of plastic deformation in a novel single phase fcc-based MnFeCoNiCu high entropy alloy using crystallographic texture. Mater. Sci. Eng. A 657, 224 (2016).CrossRefGoogle Scholar
Lai, M.J., Tasan, C.C., and Raabe, D.: On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 111, 173 (2016).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Yurchenko, N.Y., Zherebtsov, S.V., Ladygin, A.N., Salishchev, G.A., and Tikhonovsky, M.A.: High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 636, 188 (2015).CrossRefGoogle Scholar
Roy, S. and Suwas, S.: Enhanced superplasticity for (α + β)-hot rolled Ti-6Al-4V-0.1B alloy by means of dynamic globularization. Mater. Des. 58, 52 (2014).CrossRefGoogle Scholar
Nicolaou, P.D., and Semiatin, S.L.: The knoop-hardness yield locus of an orthorhombic titanium aluminide alloy. Metall. Mater. Trans. A 29, 1763 (1998).CrossRefGoogle Scholar
Semiatin, S.L., Seetharaman, V., Dimiduk, D.M., and Ashbee, K.H.G.: Phase transformation behavior of gamma titanium aluminide alloys during supertransus heat treatment. Metall. Mater. Trans. A 92, 7 (1998).CrossRefGoogle Scholar
Schuster, J.C. and Palm, M.: Reassessment of the binary aluminum-titanium phase diagram. J. Phase Equilibria Diffus. 27, 255 (2006).CrossRefGoogle Scholar
Seetharaman, V. and Semiatin, S.L.: Plastic-flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloy. Metall. Mater. Trans. A 28, 2309 (1997).Google Scholar
Cheng, L., Li, J., Tang, B., Kou, H., and Bouzy, E.: Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2 + γ) microstructure. Intermetallics 75, 6271 (2016).Google Scholar