Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T23:28:21.421Z Has data issue: false hasContentIssue false

High-temperature annealing behavior of ion-implanted spinel single crystals

Published online by Cambridge University Press:  01 December 2004

S.E. Enescu
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France; and Horia Hulubei National Institute for Physics and Nuclear Engineering, 76900 Bucharest, Romania
L. Thomé*
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France
A. Gentils
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France; and Commissariat à l’Energie Atomique-Cadarache, DEN/DEC/SESC, F-13108 St. Paul-lez-Durance, France
T. Thomé
Affiliation:
CEA-Saclay, DSM/DRECAM/SPCSI, F-91191 Gif-sur-Yvette Cedex, France
*
a) Address all correspondence to this author. e-mail: thome@csnsm.in2p3.fr
Get access

Abstract

This paper reports modifications of the chemical and structural properties of MgAl2O4 single crystals implanted with Cs ions and submitted to high-temperature annealing. The composition changes, the damage created in the three sublattices (Al, Mg and O) of the crystals, and the behavior of implanted ions were studied by Rutherford backscattering and channeling experiments as a function of the Cs fluence and annealing temperature. The data show that annealing above 700–800 °C induces a huge modification of the stoichiometry of the material, a decrease of the lattice disorder, and an increase of the fraction of Cs atoms located in substitutional lattice sites. These results have to be taken into account for the future use of spinel as a matrix for the transmutation of nuclear waste.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Clinard, F.W.Jr., Hurley, G.F., Hobbs, L.W., Rohr, D.L. and Youngmann, R.A.: Structural performance of ceramics in a high-fluence fusion environment. J. Nucl. Mater. 123, 1386 (1984).CrossRefGoogle Scholar
2Zinkle, S.J.: Hardness and depth-dependent microstructure of ion-irradiated magnesium aluminate spinel. J. Am. Ceram. Soc. 72, 1343 (1989).CrossRefGoogle Scholar
3Sickafus, K.E., Larson, A.C., Yu, N., Nastasi, M., Hollenberger, G.W., Garner, F.A. and Bradt, R.C.: Cation disorder in high-dose neutron-irradiated spinel. J. Nucl. Mater. 219, 128 (1995).CrossRefGoogle Scholar
4Burghartz, M., Matzke, Hj., Léger, C., Vambenèpe, G. and Rome, M.: Inert matrices for the transmutation of actinides: Fabrication, thermal properties and radiation stability of ceramic materials. J. Alloys Compd. 271–273, 544 (1998).CrossRefGoogle Scholar
5Matzke, H.J., Rondinella, V.V. and Wiss, T.: Materials research on inert matrices: A screening study. J. Nucl. Mater. 274, 47 (1999).CrossRefGoogle Scholar
6Bordes, N., Wang, L.M., Ewing, R.C. and Sickafus, K.E.: Ion-beam induced disordering and onset of amorphization in spinel by defect accumulation. J. Mater. Res. 10, 4 (1995).CrossRefGoogle Scholar
7Sickafus, K.E., Yu, N., Devanathan, R. and Nastasi, M.: The irradiation damage response of MgO·3Al2O3 spinel single crystal under high-fluence ion-irradiation. Nucl. Instrum. Meth. B 106, 573 (1995).CrossRefGoogle Scholar
8Sickafus, K.E., Yu, N. and Nastasi, M.: Radiation resistance of the oxide spinel: The role of stoichiometry on damage response. Nucl. Instrum. Meth. B 116, 85 (1996).CrossRefGoogle Scholar
9Turos, A., Matzke, H.J., Drigos, A., Sambo, A. and Falcone, R.: Radiation damage in spinel single crystals. Nucl. Instrum. Meth. B 113, 261 (1996).CrossRefGoogle Scholar
10Devanathan, R., Yu, N., Sickafus, K.E. and Nastasi, M.: Structure and mechanical properties of irradiated magnesium aluminate spinel. J. Nucl. Mater. 232, 59 (1996).CrossRefGoogle Scholar
11Yu, N., Devanathan, R., Sickafus, K.E. and Nastasi, M.: Radiation-induced phase transformation in MgAl2O4 spinel. J. Mater. Res. 12, 1766 (1997).CrossRefGoogle Scholar
12Sickafus, K.E., Matzke, Hj., Yasuda, K., III, P. Chodak, Verrall, R.A., Lucuta, P.G., Andrews, H.R., Turos, A., Fromknecht, R. and Baker, N.P.: Radiation-damage effects in cubic-stabilized zirconia irradiated with 72 MeV I ions. Nucl. Instrum. Meth. B 141, 358 (1998).CrossRefGoogle Scholar
13Zinkle, S.J. and Skuratov, V.A.: Track formation and dislocation loop interaction in spinel irradiated with swift heavy ions. Nucl. Instrum. Meth. B 141, 737 (1998).CrossRefGoogle Scholar
14Zinkle, S.J. and Pells, G.P.: Microstructure of Al2O3 and MgAl2O4 irradiated at low temperatures. J. Nucl. Mater. 253, 120 (1998).CrossRefGoogle Scholar
15Sickafus, K.E., Wetteland, C.J., Baker, N.P., Yu, N., Devanathan, R., Nastasi, M. and Bordes, N.: A comparison between the irradiation damage response of spinel and zirconia due to Xe ion bombardment. Mater. Sci. Eng. A 253, 78 (1998).CrossRefGoogle Scholar
16Wiss, T. and Matzke, Hj.: Heavy ion induced damage in MgAl2O4, an inert matrix candidate for the transmutation of minor actinides. Radiat. Meas. 31, 507 (1999).CrossRefGoogle Scholar
17Wang, L.M., Gong, W.L., Wang, S.X. and Ewing, R.C.: Comparison of ion-beam irradiation effects in X2YO4 compounds. J. Am. Ceram. Soc. 82, 3321 (1999).CrossRefGoogle Scholar
18Thomé, L., Jagielski, J., Binet, C. and Garrido, F.: Structural properties of fission-product doped ZrO2 and MgAl2O4 single crystals. Nucl. Instrum. Meth. B 166–167, 258 (2000).CrossRefGoogle Scholar
19Soeda, T., Matsumura, S., Kinoshita, C. and Zaluzec, N.J.: Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation. J. Nucl. Mater. 283–287, 952 (2000).CrossRefGoogle Scholar
20Ishimaru, M., Afanasyev-Charkin, I.V. and Sickafus, K.E.: Ion-beam-induced spinel-to-rocksalt structural phase transformation in MgAl2O4. Appl. Phys. Lett. 76, 2556 (2000).CrossRefGoogle Scholar
21Sasajima, N., Matsui, T., Furuno, S., Shiratori, T. and Hojou, K.: Radiation effects on MgAl2O4–stabilized ZrO2 composite material under He+ or Xe2+ ion irradiation. Nucl. Instrum. Meth. B 166–167, 250 (2000).CrossRefGoogle Scholar
22Afanasyev-Charkin, I.V., Cooke, D.W., Ishimaru, M., Bennett, B.L., Gritsyna, V.T., Williams, J.R. and Sickafus, K.E.: Refractive indices of metastable and amorphous phases in Ne+-ion iradiated magnesium-aluminate spinel. Opt. Mater. 16, 397 (2001).CrossRefGoogle Scholar
23Gentils, A., Thomé, L., Jagielski, J. and Garrido, F.: Concentration-triggered fission product release from zirconia: Consequences for nuclear safety. J. Nucl. Mater. 300, 266 (2002).CrossRefGoogle Scholar
24Thiriet-Dodane, C. Radiation damage in MgAl2O4 and ZnAl2O4 spinel ceramics – Application to the transmutation at nuclear waste. Ph.D. Thesis, Université de Paris-Sud, France (2002)Google Scholar
25Simeone, D., Dodane-Thiriet, C., Gosset, D., Daniel, P. and Beauvy, M.: Order-disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels. J. Nucl. Mater. 300, 151 (2002).CrossRefGoogle Scholar
26Ishimaru, M., Hirotsu, Y., Afanasyev-Charkin, I.V. and Sickafus, K.E.: Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel. J. Phys. Condens. Matter 14, 1237 (2002).CrossRefGoogle Scholar
27Aruga, T., Katano, Y., Ohmichi, T., Okayasu, S., Kazumata, Y. and Jitsukawa, S.: Depth-dependent and surface damages in MgAl2O4 and MgO irradiated with energetic iodine ions. Nucl. Instrum. Meth. B 197, 94 (2002).CrossRefGoogle Scholar
28Aruga, T., Katano, Y., Ohmichi, T. and Jitsukawa, S.: The interpretation of surface damages in Al2O3, MgAl2O4 and MgO irradiated with energetic iodine ions. Surf. Coat. Technol. 158–159, 444 (2002).CrossRefGoogle Scholar
29Gentils, A. Radiation effects and behavior of fission products in zirconia and spinel. Ph.D. Thesis, University de Paris-Sud, France (2003)Google Scholar
30Yano, T., Insani, A., Sawada, H. and Iseki, T.: Neutron-induced damage in near-stoichiometric spinel irradiated below 200°C and its recovery due to annealing. J. Nucl. Mater. 258, 1836 (1998).CrossRefGoogle Scholar
31Yasuda, K., Kinoshita, C., Fukuda, K. and Garner, F.A.: Thermal stability and kinetics of defects in magnesium aluminate spinel irradiated with fast neutrons. J. Nucl. Mater. 283, 937 (2000).CrossRefGoogle Scholar
32Afanasyev-Charkin, I.V., Dickerson, R.M., Cooke, D.W., Bennett, B.L., Gritsyna, V.T. and Sickafus, K.E.: Effects of Xe ion irradiation and subsequent annealing on the structural properties of magnesium-aluminate spinel. J. Nucl. Mater. 289, 110 (2001).CrossRefGoogle Scholar
33Neeft, E.A.C., Schram, R.P.C., Van Veen, A., Labohm, F. and Fedorov, A.V.: Helium irradiation effects in single crystals of MgAl2O4. Nucl. Instrum. Meth. B 166–167, 238 (2000).CrossRefGoogle Scholar
34Fromknecht, R., Hiernaut, J.P., Matzke, H.J. and Wiss, T.: He-ion damage and He-release from spinel MgAl2O4. Nucl. Instrum. Meth. B. 166, 263 (2000).CrossRefGoogle Scholar
35Neeft, E.A.C., Van Veen, A., Schram, R.P.C. and Labohm, F.: Annealing effects of helium implanted single crystals and polycrystalline magnesium aluminate spinel. Progr. Nucl. Energy 38, 287 (2001).CrossRefGoogle Scholar
36Damen, P.M.G., van Veen, A., Matzke, Hj., Schut, H., Valdez, J.A., Wetteland, C.J. and Sickafus, K.E.: Helium behaviour and defect evolution in amorphous spinel during thermal annealing. J. Nucl. Mater. 306, 180 (2002).CrossRefGoogle Scholar
37Gentils, A., Thomé, L., Jagielski, J., Enescu, S.E., Garrido, F., Beauvy, M. and Blaise, G.: High temperature behaviour of fission product analogues implanted into nuclear ceramics. Vacuum 70, 123 (2003).CrossRefGoogle Scholar
38Ziegler, J.F., Biersack, J.P. and Littmark, U. in The Stopping and Range of Ions in Solids, Vol. 1, edited by Ziegler, J.F. (Pergamon, New York, NY, 1985)Google Scholar
39Cottereau, E., Camplan, J., Chaumont, J., Meunier, R. and Bernas, H.: ARAMIS: An ambidextrous 2 MV accelerator for IBA and MeV implantation. Nucl. Instrum. Meth. B 45, 293 (1990).CrossRefGoogle Scholar
40Doolittle, L.R.: Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Meth. B 9, 344 (1985).CrossRefGoogle Scholar
41Marletta, G., Iacona, F. and Kelly, R.: Bombardment-induced compositional change in MgAl2O4, MgO and Al2O3. Nucl. Instrum. Meth. B 65, 97 (1992).CrossRefGoogle Scholar
42Thomé, L., Fradin, J., Jagielski, J., Gentils, A., Enescu, S. and Garrido, F.: Radiation damage in ion-irradiated yttria-stabilized cubic zirconia single crystals. Eur. Phys. J. Appl. Phys. 24, 37 (2003).CrossRefGoogle Scholar
43Materials Analysis by Ion Channeling, edited by Feldman, L.C., Mayer, J.W., and Picraux, S.T. (Academic Press, New York, NY 1982), Chap. 5Google Scholar
44Sickafus, K.E., Wills, J.M. and Grimes, N.W.: Structure of spinel. J. Am. Ceram. Soc. 82, 3279 (1999).CrossRefGoogle Scholar
45Yamanaka, T. and Takeuchi, Y.: Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700 °C. Z. Kristal. 165, 65 (1983).CrossRefGoogle Scholar
46Itoh, N. and Tanimura, K.: Radiation effects in ionic solids. Radiat. Eff. 98, 269 (1986).CrossRefGoogle Scholar
47Zinkle, S.J. and Kinoshita, C.: Defect production in ceramics. J. Nucl. Mater. 251, 200 (1997).CrossRefGoogle Scholar
48The Elements, edited by Emsley, J. (Oxford University Press, Oxford, U.K., 1998).Google Scholar
49Turos, A., Matzke, H.J. and Meyer, O.: Lattice location of fission products in UO2 single crystals. Nucl. Instrum. Meth. B 65, 315 (1992).CrossRefGoogle Scholar
50Meyer, O. and Turos, A.: Lattice site occupation of non-soluble elements implanted in metals. Mater. Sci. Rep. 2, 371 (1987).CrossRefGoogle Scholar
51Gritsyna, V.T., Kasatkina, N.A. and Pershin, V.F.: Surface layer composition of ion bombarded spinel crystals. Nucl. Instrum. Meth. B 127–128, 612 (1997).CrossRefGoogle Scholar
52Ando, K. and Oishi, Y.: Self-diffusion coefficients of oxygen ion in single crystals of MgAl2O4 spinels. J. Chem. Phys. 61, 625 (1974).CrossRefGoogle Scholar